CloudCompare——统计滤波

这篇具有很好参考价值的文章主要介绍了CloudCompare——统计滤波。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

CloudCompare——统计滤波,CloudCompare,开发语言,算法,计算机视觉,矩阵,线性代数,c++

本文由CSDN点云侠原创,CloudCompare——统计滤波,爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。

1.统计滤波

  算法原理见:PCL 统计滤波器。

2.软件实现

参数设置
CloudCompare——统计滤波,CloudCompare,开发语言,算法,计算机视觉,矩阵,线性代数,c++

3.完整操作

CloudCompare——统计滤波,CloudCompare,开发语言,算法,计算机视觉,矩阵,线性代数,c++文章来源地址https://www.toymoban.com/news/detail-671115.html

4.算法源码

ReferenceCloud* CloudSamplingTools::sorFilter(	GenericIndexedCloudPersist* inputCloud,
												int knn/*=6*/,
												double nSigma/*=1.0*/,
												DgmOctree* inputOctree/*=0*/,
												GenericProgressCallback* progressCb/*=0*/)
{
	if (!inputCloud || knn <= 0 || inputCloud->size() <= static_cast<unsigned>(knn))
	{
		//invalid input
		assert(false);
		return nullptr;
	}

	DgmOctree* octree = inputOctree;
	if (!octree)
	{
		//compute the octree if necessary
		octree = new DgmOctree(inputCloud);
		if (octree->build(progressCb) < 1)
		{
			delete octree;
			return nullptr;
		}
	}

	//output
	ReferenceCloud* filteredCloud = nullptr;

	for (unsigned step = 0; step < 1; ++step) //fake loop for easy break
	{
		unsigned pointCount = inputCloud->size();

		std::vector<PointCoordinateType> meanDistances;
		try
		{
			meanDistances.resize(pointCount, 0);
		}
		catch (const std::bad_alloc&)
		{
			//not enough memory
			break;
		}
		
		double avgDist = 0;
		double stdDev = 0;

		//1st step: compute the average distance to the neighbors
		{
			//additional parameters
			void* additionalParameters[] = {reinterpret_cast<void*>(&knn),
											reinterpret_cast<void*>(&meanDistances)
			};

			unsigned char octreeLevel = octree->findBestLevelForAGivenPopulationPerCell(knn);

			if (octree->executeFunctionForAllCellsAtLevel(	octreeLevel,
															&applySORFilterAtLevel,
															additionalParameters,
															true,
															progressCb,
															"SOR filter") == 0)
			{
				//something went wrong
				break;
			}

			//deduce the average distance and std. dev.
			double sumDist = 0;
			double sumSquareDist = 0;
			for (unsigned i = 0; i < pointCount; ++i)
			{
				sumDist += meanDistances[i];
				sumSquareDist += meanDistances[i] * meanDistances[i];
			}
			avgDist = sumDist / pointCount;
			stdDev = sqrt(std::abs(sumSquareDist / pointCount - avgDist*avgDist));
		}

		//2nd step: remove the farthest points 
		{
			//deduce the max distance
			double maxDist = avgDist + nSigma * stdDev;

			filteredCloud = new ReferenceCloud(inputCloud);
			if (!filteredCloud->reserve(pointCount))
			{
				//not enough memory
				delete filteredCloud;
				filteredCloud = nullptr;
				break;
			}

			for (unsigned i = 0; i < pointCount; ++i)
			{
				if (meanDistances[i] <= maxDist)
				{
					filteredCloud->addPointIndex(i);
				}
			}

			filteredCloud->resize(filteredCloud->size());
		}
	}

	if (!inputOctree)
	{
		delete octree;
		octree = nullptr;
	}

	return filteredCloud;
}

5.相关代码

  • PCL 统计滤波器
  • PCL 统计滤波(C++详细过程版)
  • Open3D(C++) 统计滤波
  • Open3D 统计滤波器
  • matlab 点云统计滤波

到了这里,关于CloudCompare——统计滤波的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 几百本常用计算机开发语言电子书链接

    GitHub - XiangLinPro/IT_book: 本项目收藏这些年来看过或者听过的一些不错的常用的上千本书籍,没准你想找的书就在这里呢,包含了互联网行业大多数书籍和面试经验题目等等。有人工智能系列(常用深度学习框架TensorFlow、pytorch、keras。NLP、机器学习,深度学习等等),大数据系

    2024年02月15日
    浏览(41)
  • 2023届计算机保研面试基础专业问题(数据结构、算法、计算机语言、计算机网络、数据库、操作系统、数学)

    以下的专业相关基础问题,是在2022年暑期准备面试过程中,断断续续准备的,最终上岸厦大啦,也希望这些内容对后面准备保研的学弟学妹们有帮助。少即是多、快即是慢,希望大家也不必太焦虑,慢慢来比较快! 堆、栈、队列、链表等数据结构 树:红黑树、二叉树的各类

    2024年02月15日
    浏览(60)
  • 计算机开发岗和算法岗都有些什么区别?

    写在前面 今年的春招刚刚开始,相信小伙伴们已经有了自己的目标。但在这个过程中,有一些同学不知道如何选择适合自己的岗位。今天岛主针对这一现象介绍计算机开发岗和算法岗的区别。 01 什么是开发岗?什么是算法岗? 计算机开发岗主要是指 软件开发 ,开发人员利

    2024年04月28日
    浏览(36)
  • 入门Python编程:了解计算机语言、Python介绍和开发环境搭建

    计算机语言是用来控制计算机行为的一种语言,通过它可以告诉计算机该做什么。计算机语言和人类语言在本质上没有太大区别,只是交流的对象不同。 计算机语言发展经历了三个阶段: 1. 机器语言 机器语言使用二进制编码来编写程序。 执行效率高,但编写起来麻烦。 2

    2024年02月09日
    浏览(68)
  • 【计算机视觉】图像分割与特征提取——频域增强(低通滤波&高通滤波)

    个人简介:  📦个人主页:赵四司机 🏆学习方向:JAVA后端开发  ⏰往期文章:SpringBoot项目整合微信支付 🔔博主推荐网站:牛客网 刷题|面试|找工作神器 📣种一棵树最好的时间是十年前,其次是现在! 💖喜欢的话麻烦点点关注喔,你们的支持是我的最大动力。 前言:

    2024年01月15日
    浏览(50)
  • CloudCompare 二次开发(6)——插件中拖拽添加Qt窗口(区域生长算法为例)

    本文由CSDN点云侠原创,原文链接。爬虫网站自重。   手动拖拽的方式搭建Qt对话框界面的制作流程,以PCL中的点云区域生长算法为例进行制作。 1、将 ....pluginsexample 路径下的 ExamplePlugin 复制一份并修改名字为 CCPointCloudProcess 。 2、创建窗口UI文件 使用任意Qt工程新建对话

    2023年04月11日
    浏览(53)
  • 计算机视觉基础(3)——图像滤波与边缘检测

    本文主要聚焦于 图像滤波与边缘检测 两部分。图像滤波部分分析的是 线性移不变系统,将介绍两类滤波器,平滑滤波器和梯度滤波器 。边缘检测部分将介绍 高斯导数滤波器和Canny边缘检测器 。为了更好的阅读体验,读者需要提前了解或掌握卷积、线性移不变系统、梯度、

    2024年02月02日
    浏览(61)
  • 想学计算机编程从什么学起?零基础如何自学计算机编程?中文编程开发语言工具箱之渐变标签组构件

    想学计算机编程从什么学起?零基础如何自学计算机编程? 给大家分享一款中文编程工具,零基础轻松学编程,不需英语基础,编程工具可下载。 这款工具不但可以连接部分硬件,而且可以开发大型的软件,向如图这个实例就是用这个工具开发的。 它的编程工具箱非常的丰

    2024年02月05日
    浏览(71)
  • 图像处理与计算机视觉--第四章-图像滤波与增强-第二部分

    目录 1.图像噪声化处理与卷积平滑 2.图像傅里叶快速变换处理 3.图像腐蚀和膨胀处理 4 图像灰度调整处理 5.图像抖动处理算法    

    2024年02月07日
    浏览(40)
  • 图像处理与计算机视觉--第四章-图像滤波与增强-第一部分

    目录 1.灰度图亮度调整 2.图像模板匹配 3.图像裁剪处理 4.图像旋转处理 5.图像邻域与数据块处理

    2024年02月07日
    浏览(66)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包