目录
一、原理
1. 引例:207.课程表
2. 应用场景
3. 代码思路
二、代码模板
三、练习
1、210.课程表Ⅱ🟢
2、2392.给定条件下构造举证🟡
3、310.最小高度树🟡
4、 2603.收集树中金币 🔴
一、原理
1. 引例:207.课程表
就如大学课程安排一样,如果要学习数据结构与算法、机器学习这类课程,肯定要先学习C语言、Python、离散数学、概率论等等,我们将类似的“推导”关系建如下有向简单图⬇️
2. 应用场景
根据节点的入度大小,拓扑排序主要用于处理先后问题(拓扑序列),以及判断图中是否有环的问题;
3. 代码思路
用大小为节点个数的数组记录每个节点的入度,用队列存放入度为0的节点,遍历这些节点,将这些节点指向的节点的入度-1,最后在记录入度减为0的节点,重复上述步骤;
①拓扑序列:在循环过程中向一数组中push入度为0的节点,排在数组前的节点即为入度先被减为0的节点;
②是否存在环:若拓扑序列数组大小等于节点总个数则说明图中无环;反之,这说明图有环
二、代码模板
/*这里用课程表一题的代码当作模板*/
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> g(numCourses);
int in_degree[numCourses]; //记录节点的入度
memset(in_degree, 0, sizeof(in_degree));
for (auto& e : prerequisites) {
int x = e[0], y = e[1]; //建图
g[x].push_back(y);
in_degree[y]++; // x -> y ,则y节点入度+1
}
vector<int> order;
queue<int> q;
for(int i = 0; i < numCourses; i++) if (in_degree[i] == 0) q.push(i); //将入度为0的节点加入到队列中
while (!q.empty()) {
int x = q.front();
q.pop();
order.push_back(x); //push到拓扑序列中
for (auto y : g[x]) {
in_degree[y]--; //x -> y , 即将y入度-1
if (in_degree[y] == 0) q.push(y);
}
}
return order.size() == numCourses; //判断是否有环
}
};
三、练习
1、210.课程表Ⅱ🟢
现在你总共有
numCourses
门课需要选,记为0
到numCourses - 1
。给你一个数组prerequisites
,其中prerequisites[i] = [ai, bi]
,表示在选修课程ai
前 必须 先选修bi
。
- 例如,想要学习课程
0
,你需要先完成课程1
,我们用一个匹配来表示:[0,1]
。返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组 。
示例:
输入:numCourses = 2, prerequisites = [[1,0]] 输出:[0,1] 解释:总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为[0,1] 。
解题思路: 与课程表Ⅰ思路基本一样,依次取出入度为0的节点加入到答案数组中,若数组大小与总结点个数不相同,则说明图中有环,返回空数组。
class Solution {
public:
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> g(numCourses);
int in_degree[numCourses];
memset(in_degree, 0, sizeof(in_degree));
for (auto& e : prerequisites) {
int x = e[1], y = e[0];
g[x].push_back(y);
in_degree[y]++;
}
vector<int> order;
queue<int> q;
for(int i = 0; i < numCourses; i++) if (in_degree[i] == 0) q.push(i);
while (!q.empty()) {
int x = q.front();
q.pop();
order.push_back(x);
for (auto y : g[x]) {
in_degree[y]--;
if (in_degree[y] == 0) q.push(y);
}
}
return order.size() == numCourses ? order : vector<int>();
}
};
2、2392.给定条件下构造举证🟡
给你一个 正 整数
k
,同时给你:
- 一个大小为
n
的二维整数数组rowConditions
,其中rowConditions[i] = [abovei, belowi]
- 一个大小为
m
的二维整数数组colConditions
,其中colConditions[i] = [lefti, righti]
。两个数组里的整数都是
1
到k
之间的数字。你需要构造一个
k x k
的矩阵,1
到k
每个数字需要 恰好出现一次 。剩余的数字都是0
。矩阵还需要满足以下条件:
- 对于所有
0
到n - 1
之间的下标i
,数字abovei
所在的 行 必须在数字belowi
所在行的上面。- 对于所有
0
到m - 1
之间的下标i
,数字lefti
所在的 列 必须在数字righti
所在列的左边。返回满足上述要求的 任意 矩阵。如果不存在答案,返回一个空的矩阵。
示例:
输入:k = 3, rowConditions = [[1,2],[3,2]], colConditions = [[2,1],[3,2]] 输出:[[3,0,0],[0,0,1],[0,2,0]] 解释:上图为一个符合所有条件的矩阵。 行要求如下: - 数字 1 在第 1 行,数字 2 在第 2 行,1 在 2 的上面。 - 数字 3 在第 0 行,数字 2 在第 2 行,3 在 2 的上面。 列要求如下: - 数字 2 在第 1 列,数字 1 在第 2 列,2 在 1 的左边。 - 数字 3 在第 0 列,数字 2 在第 1 列,3 在 2 的左边。 注意,可能有多种正确的答案。
解题思路:该题很明显是处理先后的问题,我们分别处理行与列,分别得到行与列拓扑序列,最后通过一个数组转换,将下标作为节点,对应的值作为该节点位于行/列的位置;
class Solution {
public:
vector<vector<int>> buildMatrix(int k, vector<vector<int>>& rowConditions, vector<vector<int>>& colConditions) {
vector<int> roworder, colorder;
function<bool(vector<vector<int>>&, vector<int>&)> topo_sort = [&](vector<vector<int>>& edge, vector<int>& order) -> bool{
vector<vector<int>> g(k);
int in_deg[k];
memset(left, 0, sizeof(left));
for (auto& e : edge) {
int x = e[0]-1, y = e[1] - 1;
g[x].push_back(y);
in_deg[y]++;
}
queue<int> q;
for(int i = 0; i < k; i++) if (in_deg[i] == 0) q.push(i);
while (!q.empty()) {
int x = q.front();
q.pop();
order.push_back(x);
for (auto y : g[x]) {
in_deg[y]--;
if (in_deg[y] == 0) q.push(y);
}
}
return order.size() == k;
};
vector<vector<int>> ans(k, vector<int>(k, 0));
if (!topo_sort(rowConditions, roworder) || !topo_sort(colConditions, colorder)) return {};
int row[k], col[k];
for (int i = 0; i < k; i++) {
row[roworder[i]] = i;
col[colorder[i]] = i;
}
for (int i = 0; i < k; i++) {
ans[row[i]][col[i]] = i + 1;
}
return ans;
}
};
3、310.最小高度树🟡
树是一个无向图,其中任何两个顶点只通过一条路径连接。 换句话说,一个任何没有简单环路的连通图都是一棵树。
给你一棵包含
n
个节点的树,标记为0
到n - 1
。给定数字n
和一个有n - 1
条无向边的edges
列表(每一个边都是一对标签),其中edges[i] = [ai, bi]
表示树中节点ai
和bi
之间存在一条无向边。可选择树中任何一个节点作为根。当选择节点
x
作为根节点时,设结果树的高度为h
。在所有可能的树中,具有最小高度的树(即,min(h)
)被称为 最小高度树 。请你找到所有的 最小高度树 并按 任意顺序 返回它们的根节点标签列表。
树的 高度 是指根节点和叶子节点之间最长向下路径上边的数量。
示例:
输入:n = 6, edges = [[3,0],[3,1],[3,2],[3,4],[5,4]] 输出:[3,4]
解题思路: 本题思路较为复杂,可以大致理解为贪心,证明过程可以参考力扣官方答案。每次去掉节点入度最小的节点,到最后剩余1-2个节点即为可以作为最小高度树的根节点
class Solution {
public:
vector<int> findMinHeightTrees(int n, vector<vector<int>>& edges) {
if (n == 1) return {0};
unordered_map<int, vector<int>> g;
vector<int> degree(n);
for (auto& e : edges) {
int x = e[0], y = e[1];
g[x].push_back(y);
g[y].push_back(x);
degree[x]++;
degree[y]++;
}
vector<int> ans;
queue<int> q;
for (int i = 0; i < n; i++) if (degree[i] == 1) q.push(i);
while(!q.empty()) {
vector<int> tmp;
int size = q.size();
while(size--) {
int x = q.front();
q.pop();
tmp.push_back(x);
for(auto y : g[x]) {
if (--degree[y] == 1) q.push(y);
}
}
ans = move(tmp);
}
return ans;
}
};
4、2603.收集树中金币 🔴
给你一个
n
个节点的无向无根树,节点编号从0
到n - 1
。给你整数n
和一个长度为n - 1
的二维整数数组edges
,其中edges[i] = [ai, bi]
表示树中节点ai
和bi
之间有一条边。再给你一个长度为n
的数组coins
,其中coins[i]
可能为0
也可能为1
,1
表示节点i
处有一个金币。一开始,你需要选择树中任意一个节点出发。你可以执行下述操作任意次:
- 收集距离当前节点距离为
2
以内的所有金币,或者- 移动到树中一个相邻节点。
你需要收集树中所有的金币,并且回到出发节点,请你返回最少经过的边数。
如果你多次经过一条边,每一次经过都会给答案加一。
示例 1:
输入:coins = [0,0,0,1,1,0,0,1], edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[5,6],[5,7]] 输出:2 解释:从节点 0 出发,收集节点 4 和 3 处的金币,移动到节点 2 处,收集节点 7 处的金币,移动回节点 0 。
解题思路:
步骤1: 持续删除没有金币的子树,若该子树没有金币,那么也就没有必要访问这个子树的所有节点(拓扑排序思路,记录各个节点的入度)
步骤2: 因为可以从一个节点查询到离该节点距离为2的所有节点,所以可以将这些可以其他节点间接访问的节点删除;通过连续两次循环,将每次入度为1的叶子节点删除。
文章来源:https://www.toymoban.com/news/detail-671362.html
步骤3: 通过上述两个步骤,剩余节点的叶子节点为必须被访问的节点,易证得,从任意节点开始访问所有剩余叶子节点并返回最初节点所经过得边数均为最后这颗树(通过步骤1、2删除节点之后的树)的边数的两倍。文章来源地址https://www.toymoban.com/news/detail-671362.html
class Solution {
public:
int collectTheCoins(vector<int>& coins, vector<vector<int>>& edges) {
int n = coins.size();
vector<vector<int>> g(n);
//拓扑排序所用的记录入度的数组,在后面的循环中可以得知,入度减为-1的节点即为删除的节点
vector<int> indegree(n);
for (auto& e : edges) {
int x = e[0], y = e[1];
g[x].push_back(y); g[y].push_back(x);
indegree[x]++; indegree[y]++;
}
//步骤1
queue<int> q;
for (int i = 0; i < n; i++) if (coins[i] == 0 && indegree[i] == 1) q.push(i);
while(!q.empty()) {
int x = q.front();
q.pop();
indegree[x]--;
for (auto y : g[x]) {
indegree[y]--;
若当y为当前树的叶子节点且没有金币,则加入队列中,继续循环删除
if (indegree[y] == 1 && coins[y] == 0) q.push(y);
}
}
//步骤2
for(int i = 0; i < n; i++) if (coins[i] == 1 && indegree[i] == 1) q.push(i);
int t = 2;
while(t--) {
int size = q.size();
while(size--) {
int x = q.front();
q.pop();
indegree[x]--;
for (auto y : g[x]) {
indegree[y]--;
if (indegree[y] == 1) q.push(y);
}
}
}
//步骤3:
int st = -1; //寻找dfs的入口
for (int i = 0; i < n; i++) if (indegree[i] > 0) {
st = i;
break;
}
vector<int> vis(n, 0);
int ans = 0;
function<void(int)> dfs = [&](int x) -> void {
vis[x] = true;
for (auto y : g[x]) {
if (indegree[y] > 0 && !vis[y]) { //indegree[i] <= 0 表示该节点已删除
vis[y] = true;
ans++;
dfs(y);
}
}
};
if (st != -1) dfs(st);
return ans * 2;
}
};
到了这里,关于⌈算法进阶⌋图论::拓扑排序(Topological Sorting)——快速理解到熟练运用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!