使用opencv_gpu实现边缘检测

这篇具有很好参考价值的文章主要介绍了使用opencv_gpu实现边缘检测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在使用 OpenCV 中的 GPU 进行 findContours 操作时,首先需要导入相应的模块。可以使用以下代码导入 GPU 模块:

import cv2
import cv2.cuda

接下来,可以使用 cv2.cuda.createCannyEdgeDetector() 函数创建一个 Canny 边缘检测器的 GPU 对象。该函数的参数可以根据需要进行调整。例如:

gpu_canny = cv2.cuda.createCannyEdgeDetector(threshold1=100, threshold2=200)

然后,可以使用 cv2.cuda.GpuMat() 函数将图像数据传递给 GPU。例如,假设图像数据保存在变量 img 中,可以使用以下代码将图像数据传递给 GPU:

gpu_img = cv2.cuda.GpuMat()
gpu_img.upload(img)

接下来,可以使用创建的 GPU 对象对图像进行边缘检测。例如,可以使用以下代码对图像进行边缘检测:

gpu_edges = gpu_canny.detect(gpu_img)

最后,可以通过调用 cv2.cuda.stream.Stream() 函数来创建一个 GPU 流对象,并使用 cv2(cuda)函数将处理后的图像数据从 GPU 传回到 CPU 上。例如:

stream = cv2.cuda.Stream()
gpu_edges.download(edges, stream)
stream.waitForCompletion()

最后,可以使用 cv2.findContours() 函数来查找图像中的轮廓。例如:

contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

其中,edges 是经过边缘检测后的图像数据,cv2.RETR_EXTERNAL 表示只检测最外层的轮廓,cv2.CHAIN_APPROX_SIMPLE 表示简化轮廓的表示。

以上是使用 GPU 在 OpenCV 中进行 findContours 操作的代码示例文章来源地址https://www.toymoban.com/news/detail-671621.html

到了这里,关于使用opencv_gpu实现边缘检测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV—Sobel边缘检测的python代码实现

    目录 一、前言 二、主要参数 三、代码实现及效果展示 在 计算机视觉 和 图像处理 中,边缘通常包含了有关对象轮廓和结构的重要信息。OpenCV 是一个流行的计算机视觉库,它提供了许多用于边缘检测的工具,其中之一就是Sobel算子。 什么是Sobel算子? Sobel算子是一种基于卷

    2024年02月03日
    浏览(43)
  • OpenCV—拉普拉斯算子(Laplacian)边缘检测:原理与实现

    目录 介绍 拉普拉斯算子的作用 拉普拉斯算子的原理 使用OpenCV实现拉普拉斯算子 完整代码展示 结论 拉普拉斯算子是一种常用于图像处理的边缘检测技术,它有助于识别图像中的边缘和纹理特征。本文将深入探讨拉普拉斯算子的原理,以及如何使用OpenCV实现它。        

    2024年02月04日
    浏览(58)
  • QT+OpenCV实现一个标注工具(图像处理、边缘检测)

    作者是一名QT初学者,为检验学习成果及完成毕业设计,在张老师和学姐的指导下,开发了这个标注工具。CSDN上很多文章对我的学习提供了极大的帮助,分享这篇文章给需要的人一起学习进步~ 废话不多说,先看看效果: Windows10、Qt5.13.2(编译器用的是MinGW64_bit)、OpenCV4.1 环

    2024年02月11日
    浏览(49)
  • 学习opencv.js之基本使用方法(读取,显示,灰度化,边缘检测,特征值点检测)

    OpenCV.js 是 OpenCV(Open Source Computer Vision Library)的 JavaScript 版本。OpenCV 是一个广泛使用的计算机视觉和图像处理库,提供了一系列功能强大的算法和工具,用于处理图像、视频、特征提取、对象识别等计算机视觉任务。 OpenCV.js 是将 OpenCV 库编译为 JavaScript 的版本,使得开发者

    2024年02月16日
    浏览(44)
  • 人工智能-OpenCV+Python实现人脸识别(人脸检测)

    在OpenCV中使用Haar特征检测人脸,那么需要使用OpenCV提供的xml文件(级联表)在haarcascades目录下。这张级联表有一个训练好的AdaBoost训练集。首先要采用样本的Haar特征训练分类器,从而得到一个级联的AdaBoost分类器。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征

    2024年02月06日
    浏览(104)
  • 《opencv实用探索·十二》opencv之laplacian(拉普拉斯)边缘检测,Scharr边缘检测,Log边缘检测

    1、Laplacian算子 Laplacian(拉普拉斯)算子是一种二阶导数算子,其具有旋转不变性,可以满足不同方向的图像边缘锐化(边缘检测)的要求。同时,在图像边缘处理中,二阶微分的边缘定位能力更强,锐化效果更好,因此在进行图像边缘处理时,直接采用二阶微分算子而不使

    2024年04月10日
    浏览(40)
  • 《opencv实用探索·十一》opencv之Prewitt算子边缘检测,Roberts算子边缘检测和Sobel算子边缘检测

    1、前言 边缘检测: 图像边缘检测是指在图像中寻找灰度、颜色、纹理等变化比较剧烈的区域,它们可能代表着物体之间的边界或物体内部的特征。边缘检测是图像处理中的一项基本操作,可以用于人脸识别、物体识别、图像分割等多个领域。 边缘检测实质上是计算当前点和

    2024年02月22日
    浏览(54)
  • 基于人工智能与边缘计算Aidlux的鸟类检测驱赶系统(可修改为coco 80类目标检测)

    ●项目名称 基于人工智能与边缘计算Aidlux的鸟类检测驱赶系统(可修改为coco 80类目标检测) ●项目简介 本项目在Aidlux上部署鸟类检测驱赶系统,通过视觉技术检测到有鸟类时,会进行提示。并可在源码上修改coco 80类目标检测索引直接检测其他79类目标,可以直接修改、快速

    2024年02月12日
    浏览(56)
  • Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现获取图像并对图像进行边缘检测(C++)

    ​ Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。 Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度

    2024年01月19日
    浏览(48)
  • Baumer工业相机堡盟工业相机如何联合NEOAPI SDK和OpenCV实现获取图像并对图像进行边缘检测(C#)

    ​ Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。 Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度

    2024年02月01日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包