论文阅读_图形图像_U-NET

这篇具有很好参考价值的文章主要介绍了论文阅读_图形图像_U-NET。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

name_en: U-Net: Convolutional Networks for Biomedical Image Segmentation
name_ch: U-Net:用于生物医学图像分割的卷积网络
addr: http://link.springer.com/10.1007/978-3-319-24574-4_28
doi: 10.1007/978-3-319-24574-4_28
date_read: 2023-02-08
date_publish: 2015-01-01
tags: [‘图形图像’']
journal: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
author: Nassir Navab, 德国弗莱堡大学
citation: 56373

读后感

本文主要针对的问题是优化生物医学图像领域的图像识别,之前图像模型往往需要数千张标注图片训练。而医学影像数据往往存在图片大,图片中内容多(比如一张图中可能有很多的不正常细胞),难以做几千张图片的标注,除了正常异常,还常常需要标出具体位置。之前的方法是用滑动窗口将图像切成小块训练,这种方法比较慢图像重叠造成冗余,还要根据具体情况考虑切分方法,才能在上下文和效率之取得平衡。

文中提出的解决方法是:设计了U型网络结构和训练策略,相对于普通的卷积网络,增加了右侧的上采样卷积,从而恢复图像。

最终效果是,训练使用更少的数据即可训练,网络速度快,且验证在多个任务上效果好

模型结构

在结构上,它与卷积网络的区别在于:除了压缩(左侧),还加入了上采样的扩展部分(右侧),网络结构是基本对称的。网络只使用了卷积层,没有使用全连接层。

论文阅读_图形图像_U-NET,论文阅读,论文阅读

网络的左边是压缩,右边是扩展。压缩部分是普通的卷积网络,通过卷积和下采样操作,分辨率不断变小,特征通道变多;右边的扩展包含上采样和卷积,特征通道减少。在最后一层,使用 1x1 卷积将每个 64 分量特征向量映射到分类问题中的类别。网络总共有 23 个卷积层。

损失函数

目标函数定义如下:

E = ∑ x ∈ Ω w ( x ) log ⁡ ( p ℓ ( x ) ( x ) ) E=\sum_{\mathbf{x} \in \Omega} w(\mathbf{x}) \log \left(p_{\ell(\mathbf{x})}(\mathbf{x})\right) E=xΩw(x)log(p(x)(x))
除了交叉熵以外,还对不同实例做了w加权:

w ( x ) = w c ( x ) + w 0 ⋅ exp ⁡ ( − ( d 1 ( x ) + d 2 ( x ) ) 2 2 σ 2 ) w(\mathbf{x})=w_{c}(\mathbf{x})+w_{0} \cdot \exp \left(-\frac{\left(d_{1}(\mathbf{x})+d_{2}(\mathbf{x})\right)^{2}}{2 \sigma^{2}}\right) w(x)=wc(x)+w0exp(2σ2(d1(x)+d2(x))2)

其中根据经验将w0设为10,σ设为5,wc是平衡类别频率的权重图,d1 : 是到最近细胞边界的距离,d2 是到第二个最近细胞边界的距离,即:离边界越近,权重越大,从而使模型着重学习细胞边界,从图d中可以看到其权重示意。

论文阅读_图形图像_U-NET,论文阅读,论文阅读

数据增强

在训练策略上,由于缺少医学图像数据,在训练时还做了一些数据增强,一方面增加了训练数据,另一方面支持平移和旋转不变性以及对变形和灰度值变化的鲁棒性。特别是弹性形变,这里使用随机位移向量在粗略的 3 x 3 网格上生成平滑变形,对于移出的位置,从标准差为 10 像素的高斯分布中采样填充,然后使用双三次插值计算每像素位移。文章来源地址https://www.toymoban.com/news/detail-672638.html

到了这里,关于论文阅读_图形图像_U-NET的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机图形与图像技术

    可以使用Python、Java等语言。 下图中,图中各事物比例失调 如何使用代码去掉某个人(不允许使用抠图工具)?         像素(Pixel)是“图像元素”的缩写, 指的是图像的最小单位 。 它是构成数码图像或屏幕显示图像的基本单元,代表了图像中的一个小点或一个小方块

    2024年02月07日
    浏览(55)
  • Python Opencv实践 - 在图像上绘制图形

           

    2024年02月13日
    浏览(47)
  • 【Android学习笔记】图形与图像处理(动态处理)

    逐帧动画 AnimationDrawable与逐帧动画。在元素中定义子元素,表示动画的全部帧,并制定持续时间即可。 animation-list xmlns:android=\\\"“android:onshot=true/false item android:drawable=”@package_name:drawable/resource_name\\\"android:duration=“integer”/ /animation-list 补间动画 android使用Animation代表抽象的动画类

    2024年02月12日
    浏览(42)
  • opencv进阶02-在图像上绘制多种几何图形

    OpenCV 提供了方便的绘图功能,使用其中的绘图函数可以绘制直线、矩形、圆、椭圆等多种几何图形,还能在图像中的指定位置添加文字说明。 OpenCV 提供了绘制直线的函数 cv2.line()、绘制矩形的函数 cv2.rectangle()、绘制圆的函数cv2.circle()、绘制椭圆的函数cv2.ellipse()、绘制多边形

    2024年02月12日
    浏览(49)
  • 毕业设计-基于 MATLAB 的图形图像处理系统的设计与实现

    目录 前言 课题背景和意义 实现技术思路 一、数字图像处理软件 MATLAB 简介 二、 系统的具体实现  实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求

    2024年02月04日
    浏览(63)
  • PySide6-控件教程-004-QLabel标签控件-数值类型、图形图像、动画

    本文摘录自我的开源教程:PySide6 代码式教程 - QLabel,CSDN 平台仅做镜像,答疑、纠错请至 GitHub 提交 issue。 QLabel 除了显示文本字符串外,还可以用于显示数值类型、图形图像、动图等 .setNum(num: int) 将标签设置为数值类型(int) .setNum(num: float) 将标签设置为数值类型(float)

    2023年04月24日
    浏览(47)
  • 微软推出Designer图形图像设计软件,与Adobe Photoshop的较量?

    14天阅读挑战赛 “你可以不会设计,但你不会不知道Photoshop” 新浪科技讯 北京时间10月13日早间消息,据报道,美国微软公司周三宣布,推出一款名叫“Designer”的图形图像设计软件,这一软件将提供免费版,同时推出高端版,并纳入Office全家桶。 大部分设计师看到这个消息

    2024年02月06日
    浏览(41)
  • 计算机视觉 图像形成 几何图形和变换 3D到2D投影

            现在我们知道如何表示2D和3D几何图元以及如何在空间上转换它们,我们需要指定如何将 3D图元投影到图像平面上。 我们可以使用线性3D到2D投影矩阵来做到这一点。最简单的模型是正交法,它不需要除法就可以得到最终的(不均匀的)结果。更常用的模型是透视,

    2023年04月08日
    浏览(57)
  • 【CSIG图像图形技术挑战赛-开放世界目标检测竞赛】火热报名中!

    竞赛名称: 开放世界目标检测竞赛/Few Shot) 主办方:  中国图象图形学学会(CSIG) 合作方:  360集团 竞赛目的与意义: 目标检测是计算机视觉中的核心任务之一, 主要目的是让计算机可以自动识别图片中目标的类别,并标示出每个目标的位置 。当前主流的目标检测方法主要

    2023年04月20日
    浏览(35)
  • 【opencv+图像处理】Image Processing in OpenCV 1-2基本图形绘制

    🍉 博主微信 cvxiayixiao 🍓 【Segment Anything Model】计算机视觉检测分割任务专栏。 链接 🍑 【公开数据集预处理】特别是医疗公开数据集的接受和预处理,提供代码讲解。链接 🍈 【opencv+图像处理】opencv代码库讲解,结合图像处理知识,不仅仅是调库。链接 本专栏代码地址

    2024年02月08日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包