机械臂手眼标定ZED相机——眼在手外python、matlab

这篇具有很好参考价值的文章主要介绍了机械臂手眼标定ZED相机——眼在手外python、matlab。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.眼在手外原理

2.附上眼在手外求得手眼矩阵的python代码

3.眼在手外标定步骤

1)打印棋盘格

2)得到hand数据

3)得到camera数据

4.运行python得到手眼矩阵



1.眼在手外原理

机械臂手眼标定ZED相机——眼在手外python、matlab,机械臂,数码相机

 机械臂手眼标定ZED相机——眼在手外python、matlab,机械臂,数码相机

眼在手外所求的手眼矩阵是基坐标到相机的转换矩阵

2.附上眼在手外求得手眼矩阵的python代码

#!/usr/bin/env python
# coding: utf-8
import transforms3d as tfs
import numpy as np
import math


def get_matrix_eular_radu(x, y, z, rx, ry, rz):
    rmat = tfs.euler.euler2mat(math.radians(rx), math.radians(ry), math.radians(rz))
    rmat = tfs.affines.compose(np.squeeze(np.asarray((x, y, z))), rmat, [1, 1, 1])
    return rmat


def skew(v):
    return np.array([[0, -v[2], v[1]],
                     [v[2], 0, -v[0]],
                     [-v[1], v[0], 0]])


def rot2quat_minimal(m):
    quat = tfs.quaternions.mat2quat(m[0:3, 0:3])
    return quat[1:]


def quatMinimal2rot(q):
    p = np.dot(q.T, q)
    w = np.sqrt(np.subtract(1, p[0][0]))
    return tfs.quaternions.quat2mat([w, q[0], q[1], q[2]])


# hand = [1.1988093940033604, -0.42405585264804424, 0.18828251788562061, 151.3390418721659, -18.612399542280507,
#         153.05074895025035,
#         1.1684831621733476, -0.183273375514656, 0.12744868246620855, -161.57083804238462, 9.07159838346732,
#         89.1641128844487,
#         1.1508343174145468, -0.22694301453461405, 0.26625166858469146, 177.8815855486261, 0.8991159570568988,
#         77.67286224959672]
hand = [

    # -0.05448,-0.15018,0.06552,89.61059916,-2.119943842,-1.031324031,
    #     -0.10149,-0.23025,0.04023,96.7725716,6.187944187,5.328507495,
    #     -0.10114,-0.2207,0.04853,97.00175472,5.729577951,1.375098708    毫米单位

# -54.48,	-150.18,	65.52,  89.61059916,    -2.119943842,   -1.031324031,
# -101.49,-230.25,    40.23,  96.7725716,      6.187944187,    5.328507495,
# -101.14,-220.7	,   48.53,  97.00175472,    5.729577951,    1.375098708

# -122.12,	-323.09,	-206.86,	82.62051406,	-7.161972439	,1.948056503,
# -96.54,	-324.53,	-215.59,	83.70913387,	-7.734930234	,7.276563998,
# -116.41,	-325.50,	-202.05,	81.18811957,	-7.505747116	,6.187944187

        # zed
-54.29,	-95.24,	199.74,	80.45,	-5.88,	8.8,
-54.28,	-95.25,	199.73,	80.66,	-6.62,	18.13,
-54.3,	-95.27,	199.75,	81.57,	-0.76,	13.05


 ]

# camera = [-0.16249272227287292, -0.047310635447502136, 0.4077761471271515, -56.98037030812389, -6.16739631361851,
#           -115.84333735802369,
#           0.03955405578017235, -0.013497642241418362, 0.33975949883461, -100.87129330834215, -17.192685528625265,
#           -173.07354634882094,
#           -0.08517949283123016, 0.00957852229475975, 0.46546608209609985, -90.85270962096058, 0.9315977976503153,
#           175.2059707654342]

camera = [

    # -0.0794887,-0.0812433,0.0246,0.0008,0.0033,0.0182,
    #       -0.078034,-0.0879632,0.4881494,-0.1085,0.0925,-0.1569,
    #       -0.1086702,-0.0881681,0.4240367,-0.1052,0.1251,-0.1124,

# -79.4887,	-81.2433,	24.6,        0.0008,     0.0033,     0.0182,
# -78.034,	-87.9632,	488.1494,    -0.1085,    0.0925,     -0.1569,
# -108.6702,	-88.1681,	424.0367,    -0.1052,    0.1251,     -0.1124,

#     23.22020448 ,-69.45610195    ,370.5620915    ,0.2530 ,-0.0707, -1.5724,
#     46.8704669 ,-60.19912413    ,263.9729574    ,0.1473 ,-0.1117 ,-1.6090,
#     53.92881454 ,-39.52795178    ,453.4331562     ,0.2702 ,-0.1256, -1.6270,
-174.01022,	1797.687613,	2425.313638,	    1.2710,    0.1238,    0.0033,
-175.3384083,	260.4775862,	1349.136325,	    1.5191,    0.0664,    0.0058,
123.6753385,	-109.6917624,	695.5448714	,    0.4651,   -0.1328,   -0.2488



]

Hgs, Hcs = [], []
for i in range(0, len(hand), 6):
    Hgs.append(get_matrix_eular_radu(hand[i], hand[i + 1], hand[i + 2], hand[i + 3], hand[i + 4], hand[i + 5],))
    Hcs.append(
        get_matrix_eular_radu(camera[i], camera[i + 1], camera[i + 2], camera[i + 3], camera[i + 4], camera[i + 5]))

Hgijs = []
Hcijs = []
A = []
B = []
size = 0
for i in range(len(Hgs)):
    for j in range(i + 1, len(Hgs)):
        size += 1
        Hgij = np.dot(np.linalg.inv(Hgs[j]), Hgs[i])
        Hgijs.append(Hgij)
        Pgij = np.dot(2, rot2quat_minimal(Hgij))

        Hcij = np.dot(Hcs[j], np.linalg.inv(Hcs[i]))
        Hcijs.append(Hcij)
        Pcij = np.dot(2, rot2quat_minimal(Hcij))

        A.append(skew(np.add(Pgij, Pcij)))
        B.append(np.subtract(Pcij, Pgij))
MA = np.asarray(A).reshape(size * 3, 3)
MB = np.asarray(B).reshape(size * 3, 1)
Pcg_ = np.dot(np.linalg.pinv(MA), MB)
pcg_norm = np.dot(np.conjugate(Pcg_).T, Pcg_)
Pcg = np.sqrt(np.add(1, np.dot(Pcg_.T, Pcg_)))
Pcg = np.dot(np.dot(2, Pcg_), np.linalg.inv(Pcg))
Rcg = quatMinimal2rot(np.divide(Pcg, 2)).reshape(3, 3)

A = []
B = []
id = 0
for i in range(len(Hgs)):
    for j in range(i + 1, len(Hgs)):
        Hgij = Hgijs[id]
        Hcij = Hcijs[id]
        A.append(np.subtract(Hgij[0:3, 0:3], np.eye(3, 3)))
        B.append(np.subtract(np.dot(Rcg, Hcij[0:3, 3:4]), Hgij[0:3, 3:4]))
        id += 1

MA = np.asarray(A).reshape(size * 3, 3)
MB = np.asarray(B).reshape(size * 3, 1)
Tcg = np.dot(np.linalg.pinv(MA), MB).reshape(3, )
print(tfs.affines.compose(Tcg, np.squeeze(Rcg), [1, 1, 1]))

其中:

        hand为基坐标系下抓夹的位姿,一般从示教器上获取,我用的是ur5机械臂,注意单位mm和rad,三行为三组数据,hand=(x,y,z,rx,ry,rz),同时应将弧度制rad转为角度制°

        camera为相机中标定板的位姿,为相机的外参(平移矩阵、旋转矩阵),三行为三组数据,camera=(x,y,z,rx,ry,rz),同时应将弧度制转为角度制

3.眼在手外标定步骤

1)打印棋盘格

为了使标定精度更加准确,棋盘格精度越高越好;角点数越多越好;尽量减少相机中心到标定板的距离(适当小的标定板)等

参考资料:

手眼标定,我的结果显示手和眼相距上千米!手眼标定结果准确率如何提高?_提高手眼标定精度_鱼香ROS的博客-CSDN博客

这里我选择4*4的棋盘格

2)得到hand数据

示教器右侧为hand数据,记录五组,并转化为角度制

机械臂手眼标定ZED相机——眼在手外python、matlab,机械臂,数码相机

机械臂手眼标定ZED相机——眼在手外python、matlab,机械臂,数码相机

3)得到camera数据

将相机固定在距离机械臂基坐标的一定距离的地方,固定相机,记住距离

将棋盘格粘贴在机械臂末端执行器上,用相机拍摄五组棋盘格图片,使用matlab计算相机外参TR,将得到的TR转换为欧拉角

(matlab工具箱使用单目标定,其中得到的T为translationvectors,R为rotationvectors)

机械臂手眼标定ZED相机——眼在手外python、matlab,机械臂,数码相机

 (不知道这个棋盘格不正会不会有影响)

matlab标定得到的是旋转向量/旋转矩阵,得到的数据转化为欧拉角,参考下面的链接手眼标定必备——旋转向量转换为旋转矩阵python——罗德里格斯公式Rodrigues_python rodrigues_邸笠佘司的博客-CSDN博客

手眼标定中旋转矩阵转欧拉角——matlab_邸笠佘司的博客-CSDN博客

 机械臂手眼标定ZED相机——眼在手外python、matlab,机械臂,数码相机

4.运行python得到手眼矩阵

 文章来源地址https://www.toymoban.com/news/detail-673179.html

到了这里,关于机械臂手眼标定ZED相机——眼在手外python、matlab的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • JAKA+aruco+realsense+眼在手外的手眼标定

    (机械臂的运行节点商家一般会给,注意看使用说明里面的信息,容易踩雷)     用户使用说明里面会告诉你表示机器人位姿的(我的是toolpoint,这里有个大雷,后面说) (老师的驱动我用不了,就略过了,只是用aruco和calibrate两部分,眼在手外和手上的都能用,老师的是

    2024年02月21日
    浏览(53)
  • 机械臂 手眼标定 手眼矩阵 eye-in-hand 原理、实践及代码

    所谓 手眼系统 ,就是人眼睛看到一个东西的时候要让手去抓取,就需要大脑知道眼睛和手的坐标关系。而相机知道的是像素坐标,机械手是空间坐标系,所以手眼标定就是得到像素坐标系和空间机械手坐标系的坐标转化关系。 目前工业上通常使用两种方法进行机械臂的手眼

    2024年02月03日
    浏览(40)
  • zed2i相机内参标定

    参考: https://blog.csdn.net/yanpeng_love/article/details/107166922 https://blog.csdn.net/weixin_41954990/article/details/127928852 参考以上连接先安装 kalibr 。 注意: python包装不上,换成:pip install 出现pyx找不到的错误:sudo apt-get install python3-pyx 1. 生成标定板 可以自己定制特定尺寸的标定板: 其中,

    2024年02月04日
    浏览(93)
  • 【ZED&SLAM】Ubuntu18.04系统ZED 2i双目相机SDK安装、联合标定、SLAM测试

    笔记本电脑i5-8300H、GTX 1060、32G RAM 后续一些工作转移到了PC上:i7-12700 因为后面要测试Vins-Fusion和ORB-SLAM3,所以推荐安装 Ubuntu 18.04(或者Ubuntu 20.04) + ROS 1 (不建议用比Ubuntu18更低的版本) ROS一键安装命令: ZED 2i:双目相机配有9轴IMU 此前电脑已经配置好:Ubuntu 18.04,ROS 1,

    2024年01月18日
    浏览(52)
  • 使用Kalibr标定相机和IMU(ZED+px4)外参

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 本文仅使用kalibr中cam-imu的联合标定,关于camera内参默认已经知道了。主要会总结一些标定上的小经验,有不对的地方,希望网友可以指出。文章最后将使用标定的cam-imu外参在VINS-Fusion中进行验证 Kalibr是

    2023年04月19日
    浏览(77)
  • python 手眼标定OpenCV手眼标定(calibrateHandeye())一

    以下代码来源 本篇博客通过该代码,附上记录的公式与查找连接,方面以后调用能弄懂各个参数的意思 本篇看完看第二篇代码踩坑部分python 手眼标定OpenCV手眼标定(calibrateHandeye())二 相机标定原理视频介绍 calibrateHandeye() 参数描述如下:R_gripper2base,t_gripper2base是机械臂抓手

    2024年02月15日
    浏览(44)
  • python 手眼标定OpenCV手眼标定(calibrateHandeye())二

    这一章我们来根据上一章的分析,为手眼标定函数calibrateHandEye 准备他那些麻烦的参数 更详细的参数参考链接 即R_all_end_to_base_1,T_all_end_to_base_1, 我们可用通过输入的机械臂提供的6组参数得到,3个位姿与3个欧拉角 示例代码 这里是关系是 通过 cv2.findChessboardCorners 角点查找函数

    2024年02月01日
    浏览(36)
  • (已修正精度 1mm左右)Realsense d435i深度相机+Aruco+棋盘格+OpenCV手眼标定全过程记录

    最近帮别人做了个手眼标定,然后我标定完了大概精度能到1mm左右。所以原文中误差10mm可能是当时那个臂本身的坐标系有问题。然后用的代码改成了基于python的,放在下面。 新来的小伙伴可以只参考前面的代码就可以完成标定了。 有问题的话可以留言,一起交流~ 手眼标定

    2024年02月04日
    浏览(47)
  • 机器人手眼标定原理与python实现

    机器人手眼标定分为eye in hand与eye to hand两种。介绍之前进行变量定义说明: {b}: base基坐标系 {g}: gripper夹具坐标系 {t}: target标定板坐标系 {c}: camera相机坐标系 1、眼在手上(eye in hand) 眼在手上,相机固定在机器人上。 图1. eye in hand示意图 由以上两公式得: 经变换得: 可得:

    2024年02月02日
    浏览(37)
  • Python-opencv 手眼标定(九点定位)

     Python-opencv 手眼标定(九点定位) 本文主要解决相机像素坐标转换机械臂坐标的问题,用到的opencv版本为4.5.5.64 一、手眼定位原理? 以下可以参考 基于OpenCv的机器人手眼标定(九点标定法) 主要思路就是将九点标定图放在机械臂获取范围内,得到九个圆心坐标(像素坐标

    2024年02月09日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包