Prompt、RAG、微调还是重新训练?选择正确的生成式 AI 的方法指南

这篇具有很好参考价值的文章主要介绍了Prompt、RAG、微调还是重新训练?选择正确的生成式 AI 的方法指南。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


一、前言

这篇博客试图根据一些常见的可量化指标,为您选择适合您用例的生成式人工智能方法提供指导。

生成式 AI 正在以惊人的速度发展,许多组织都在尝试利用这项先进技术来解决业务问题。虽然有很多流行的方法可供选择,但是当涉及到选择正确的方法来实施生成式 AI 解决方案时,仍缺乏明确的指导。最常讨论的方法有:

  • 提示工程(Prompt Engineering
  • 检索增强生成(Retrieval Augmented Generation,RAG
  • 微调(Fine-tuning
  • 从零开始训练自己的基础模型(Foundation Model

这里不包括 “按原样使用模型” 选项,因为几乎没有任何业务用例可以有效地使用基础大模型。原封不动地使用基础大模型可以很好地用于一般搜索,但如果要做好特定的业务,则需要考虑上述选项之一。


二、主要内容

比较是如何进行的?分析是基于以下指标进行的

  • 准确性(回答的准确程度如何?)
  • 实施复杂性(实施过程有多复杂?)
  • 工作量(需要多少努力来实现?)
  • 总拥有成本(TCO)(拥有解决方案的总成本是多少?)
  • 更新和更改的便利性(架构是否耦合度低?替换 / {/} /升级组件是否容易?)

假设:我们将根据这些指标对每种解决方案进行评估,并且分析仅适用于比较,而不是普遍适用。例如:如果针对某个指标,提示工程被评为低分,意味着它在该指标上的表现低于其他选项,并不一定意味着它在该指标上普遍表现差。

首先让我们来谈谈最受关注的问题:哪种方法提供了最准确的回答?

  • 提示工程(Prompt Engineering)的核心是在提供尽可能多的上下文信息的同时,通过提供少量示例(few-shot learning)来更好地让大模型了解您的用例。虽然结果在孤立情况下看起来令人印象深刻,但与本文中讨论的其他方法相比,它产生的结果最不准确。
  • 检索增强生成(Retrieval Augmented Generation,RAG)的高质量结果是由于直接来自向量化信息存储的增强用例特定上下文。与 提示工程相比,它产生了大幅改善的结果,并且极低几率出现幻觉。
  • 微调(Fine-tuning)在准确性方面提供了相当高的结果,其输出质量与 RAG 相媲美。由于我们正在使用特定领域的数据更新模型权重,因此该模型能够产生更具上下文的回复。与 RAG 相比,质量可能会稍微好一些,这取决于使用情况。因此,评估是否真的值得花时间在两者之间进行权衡分析非常重要。通常选择微调的原因不仅仅是准确性,还包括数据变化频率、控制模型工件以符合监管、合规和可复现性等方面的考虑。
  • 从头开始训练可以产生最高质量的结果。由于模型是根据特定用例的数据进行训练,幻觉的可能性几乎为零,并且输出的准确性也是很高的。

Prompt、RAG、微调还是重新训练?选择正确的生成式 AI 的方法指南,ChatGPT 实践,大语言模型,生成式 AI,提示工程,检索增强生成,微调 Fine-tuning,原力计划

实施复杂性。让我们看看实施这些方法有多容易或困难。

  • 提示工程(Prompt Engineering)的实施复杂度相对较低,因为它几乎不需要编程。需要具备良好的英语(或其他人类解释)语言技能和领域专业知识,以制定一个带有上下文学习方法和少样本学习方法的良好提示。
  • 检索增强生成(Retrieval Augmented Generation,RAG) 比提示工程更复杂,因为你需要具备编码和架构技能来实现这个解决方案。根据在 RAG 架构中选择的工具不同,复杂度可能会更高。
  • 微调(Fine-tuning)的复杂性甚至比提示工程和 RAG 还要高,因为模型的权重 / {/} /参数是通过调整脚本进行更改的,这需要数据科学和机器学习专业知识。
  • 从头开始训练具有最高的实施复杂性,因为它需要大量的数据整理和处理,并且需要深入的数据科学和机器学习专业知识来训练一个相当大的 Foundation Model。

Prompt、RAG、微调还是重新训练?选择正确的生成式 AI 的方法指南,ChatGPT 实践,大语言模型,生成式 AI,提示工程,检索增强生成,微调 Fine-tuning,原力计划

努力,让我们了解每个解决方案需要多少努力。请注意,实施复杂性和付出的努力并不总是成正比。

  • 提示工程(Prompt Engineering)需要大量的反复努力才能做到完美。大语言模型对提示的用词比较敏感,有时候改变一个词甚至动词都会导致完全不同的回应。因此,为了让相应的大语言模型输出期望的结果,需要进行多次迭代才能做到准确无误。
  • 检索增强生成(Retrieval Augmented Generation,RAG) 还需要适度的努力,比提示工程稍微高一些,因为涉及到创建 Embeddings 和设置向量存储的任务。
  • 微调(Fine-tuning)是一项比提示工程和 RAG 更费力的任务。虽然 Fine-tuning 可以使用很少的数据进行(在某些情况下甚至只需 30 个或更少的示例),但是设置 Fine-tuning 并正确获取可调参数值需要时间。
  • 从头开始训练是所有方法中最费力的。它需要大量的迭代开发,以获得具有正确技术和业务结果的最佳模型。该过程始于收集和整理数据,设计模型架构,并尝试不同的建模方法,以找到适用于特定用例的最佳模型。这个过程可能非常漫长(几周到几个月),并且需要大量的计算资源。

Prompt、RAG、微调还是重新训练?选择正确的生成式 AI 的方法指南,ChatGPT 实践,大语言模型,生成式 AI,提示工程,检索增强生成,微调 Fine-tuning,原力计划

总拥有成本(TCO),接下来是关于 TCO 的比较。

请注意,我们不仅仅谈论的是服务 / {/} /组件的费用,而是完全拥有解决方案所需的成本,包括构建和维护解决方案所花费的熟练工程师时间、自行维护基础设施的成本、为执行补丁和更新而进行停机时间、设置支持渠道、招聘、提升技能以及其他杂项费用。

  • 提示工程(Prompt Engineering) 的成本可以非常低,因为您只需要维护提示工程模板,并在大模型版本更改或完全新的大模型出现时及时更新它们。除此之外,还会有一些通常与托管大模型或通过无服务器 API 使用它相关的费用。
  • 检索增强生成(Retrieval Augmented Generation,RAG) 的成本会比提示工程高一些,这是因为架构中涉及到多个组件。这将取决于使用的 Embedding 模型、向量存储和大模型。因此,它与提示工程相比成本更高,因为您需要支付三个不同的组件而不只是一个大模型。
  • 微调(Fine-tuning)的成本将高于 RAG 和提示工程,因为您正在调整一个需要强大计算能力、深度机器学习技能和对模型架构的理解的模型。特别是,由于每次基础模型版本更新或新批次数据进来时都需要进行调优,维护这样的解决方案的成本较高,并携带有关用例最新信息。
  • 从头开始训练的总体成本最高,因为团队需要负责整个数据处理和机器学习训练、调优和部署过程。这将需要一群高技能的机器学习专业人员来完成。由于需要频繁重新训练模型以使其与使用案例周围的新信息保持更新,因此维护这样的解决方案的成本非常高。

Prompt、RAG、微调还是重新训练?选择正确的生成式 AI 的方法指南,ChatGPT 实践,大语言模型,生成式 AI,提示工程,检索增强生成,微调 Fine-tuning,原力计划

灵活应对变化,让我们来看一下在更新和更改方面的选择。

  • 提示工程(Prompt Engineering) 具有非常高的灵活性,因为您只需要根据大模型和用例的变化来更改提示模板即可。
  • 检索增强生成(Retrieval Augmented Generation,RAG) 在架构变更方面具有最高的灵活性。您可以独立地改变 Embedding 模型、向量存储和 LLMs,对其他组件的影响很小到中等程度。它还具备在过程中添加更多组件(如复杂授权)而不影响其他组件的灵活性。
  • 微调(Fine-tuning)对于变化的适应性较低,因为任何数据和输入的更改都需要进行另一轮微调,这可能会非常复杂且耗时。此外,将同一个经过微调的模型适应到不同用例中也需要付出很大努力,因为相同的模型权重 / {/} /参数在其他领域上可能表现不佳。
  • 从头开始训练的灵活性最小。因为在这种情况下,模型是从头构建的,对模型进行更新会触发另一个重新训练周期。可以说,我们也可以对模型进行微调而不是从头重新训练,但准确性会有所变化。

Prompt、RAG、微调还是重新训练?选择正确的生成式 AI 的方法指南,ChatGPT 实践,大语言模型,生成式 AI,提示工程,检索增强生成,微调 Fine-tuning,原力计划


三、总结

正如上面的所有比较所显示的那样,其实没有明确的赢家。实际应用取决于在设计基于生成式 AI 解决方案时对您的组织最重要的指标是什么

总结以上内容,选择正确的生成式 AI 的方法指南:

  • 您希望在更改大模型和提示模板方面具有更高的灵活性,并且您的使用案例不包含大量领域上下文时,请使用提示工程(Prompt Engineering)。
  • 使用检索增强生成(Retrieval Augmented Generation,RAG)时,您可以在保持输出质量高的同时,获得最高程度的灵活性来更改不同组件(数据源、Embeddings、大模型、向量引擎)。
  • 使用微调(Fine-tuning)时,您可以更好地控制模型的构件和版本管理。当领域特定术语非常与数据相关(比如法律、生物学等)时,它也许会非常有用。
  • 如果以上方法都不适用于您,并且您有能力构建一个拥有数万亿个经过精心筛选的标记化数据样本、先进硬件基础设施和一支高技能机器学习专家团队,那么您可以从头开始训练一个基础大模型。当然,这需要相当昂贵的预算和时间成本来实现和落地应用。

📚️ 参考链接:文章来源地址https://www.toymoban.com/news/detail-673269.html

  • Vikesh Pandey:Should you Prompt, RAG, Tune, or Train? A Guide to Choose the Right Generative AI Approach
  • 2023 如何成为 Prompt Engineering 提示工程高手终极指南,从入门到高级
  • 提升 ChatGPT 性能的实用指南:Prompt Engineering 的艺术
  • RAG:使用检索增强生成构建特定行业的大型语言模型
  • LLM 回答更加准确的秘密:为检索增强生成(RAG)添加引用源
  • 吴恩达 x OpenAI Prompt Engineering 教程中文笔记
  • 吴恩达和 OpenAI 的《面向开发者的 ChatGPT 提示工程》精华笔记
  • 通俗解读大模型微调(Fine Tuning)
  • 探索,基于开源大语言通用模型训练垂直业务模型——模型参数、微调 Fine-tuning、嵌入Embedding、基础概念学习
  • 大模型微调技术:fine-tune、parameter-efficient fine-tune 和 prompt-tune
  • 大模型的三大法宝:Fine-tuning, Prompt Engineering, Reward
  • 仅用 61 行代码,你也能从零训练大模型

到了这里,关于Prompt、RAG、微调还是重新训练?选择正确的生成式 AI 的方法指南的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 高效微调大型预训练模型的Prompt Learning方法

    近年来,自然语言处理(NLP)领域的预训练模型日益增多,应用场景也变得多样。从NER(命名实体识别)到生成任务,如何高效地使用这些模型并进行微调成为了研究和实践的重要课题。本文将深入探讨一种称为Prompt Learning的方法,通过选择模型、构建模板、定义verbalizer等步

    2024年02月02日
    浏览(42)
  • 选择正确的负载均衡器:LVS还是Nginx?

    💡一个热爱分享高性能服务器后台开发知识的博主,目标是通过理论与代码实践的结合,让世界上看似难以掌握的技术变得易于理解与掌握。技能涵盖了多个领域,包括C/C++、Linux、Nginx、MySQL、Redis、fastdfs、kafka、Docker、TCP/IP、协程、DPDK等。 👉 🎖️ CSDN实力新星,社区专家

    2024年02月13日
    浏览(51)
  • 基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务

    ChatYuan-large-v2 是一个开源的支持中英双语的功能型对话语言大模型,与其他 LLM 不同的是模型十分轻量化,并且在轻量化的同时效果相对还不错,仅仅通过 0.7B 参数量就可以实现 10B 模型的基础效果,正是其如此的轻量级,使其可以在普通显卡、 CPU 、甚至手机上进行推理,而

    2024年02月13日
    浏览(45)
  • RAG实战5-自定义prompt

    在阅读本文之前,先阅读RAG实战4。在RAG实战4中我们分析了LlamaIndex中RAG的执行过程,同时留下了一个尚待解决的问题:LlamaIndex中提供的prompt template都是英文的,该如何使用中文的prompt template呢? 直接看以下代码: 先看 print(list(prompts_dict.keys())) 这行代码的输出: 这表明我们使

    2024年03月11日
    浏览(36)
  • Elasticsearch:RAG vs Fine-tunning (大语言模型微调)

    如果你对 RAG 还不是很熟悉的话,请阅读之前的文章 “Elasticsearch:什么是检索增强生成 - RAG?”。你可以阅读文章 “Elasticsearch:在你的数据上训练大型语言模型 (LLM)” 来了解更多关于如何训练你的模型。在今天的文章中,我们来讲述 RAG 及 大语言模型的优缺点。这篇文章旨

    2024年02月04日
    浏览(54)
  • 解密Prompt系列20. LLM Agent之再谈RAG的召回多样性优化

    几个月前我们就聊过RAG的经典方案解密Prompt系列14. LLM Agent之搜索应用设计。前几天刚看完openAI在DevDay闭门会议上介绍的RAG相关的经验,有些新的感悟,借此机会再梳理下RAG相关的优化方案。推荐直接看原视频(外网)A Survey of Techniques for Maximizing LLM Performance RAG最关键的一环其

    2024年02月05日
    浏览(49)
  • 【LLM】Prompt微调

    在机器学习中,Prompt通常指的是一种生成模型的输入方式。生成模型可以接收一个Prompt作为输入,并生成与该输入相对应的输出。Prompt可以是一段文本、一个问题或者一个片段,用于指导生成模型生成相应的响应、续写文本等。 一般大模型蕴含的训练数据量往往是百亿级别甚

    2024年01月17日
    浏览(40)
  • 【LLM系列之指令微调】长话短说大模型指令微调的“Prompt”

    1 指令微调数据集形式“花样”太多 大家有没有分析过 prompt对模型训练或者推理的影响?之前推理的时候,发现不加训练的时候prompt,直接输入模型性能会变差的,这个倒是可以理解。假如不加prompt直接训练,是不是测试的时候不加prompt也可以?还有一个就是多轮prompt和单轮

    2024年02月14日
    浏览(48)
  • Prompt设计与大语言模型微调

    本文主要介绍了Prompt设计、大语言模型SFT和LLM在手机天猫AI导购助理项目应用。 ChatGPT基本原理 “会说话的AI”,“智能体” 简单概括成以下几个步骤: 预处理文本:ChatGPT的输入文本需要进行预处理。 输入编码:ChatGPT将经过预处理的文本输入到神经网络中进行编码处理,使

    2024年02月08日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包