概念
二叉搜索树虽然可以缩短查找的效率,但如果数据有序或者接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。
。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
AVL树的特点:
它的左右子树都是AVL树
左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。
AVL树节点定义
template<class K,class V>
struct AVLTreeNode
{
AVLTreeNode<K, V>* _left;// 该节点的左孩子
AVLTreeNode<K, V>* _right;// 该节点的右孩子
AVLTreeNode<K, V>* _parent;// 该节点的父节点
pair<K, V> _kv;// 该节点的平衡因子
int _bf;
AVLTreeNode(const pair<K,V>& kv)
:_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_kv(kv)
,_bf(0)
{}
};
AVL树节点插入
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子
更新平衡因子的规则:
1、新增在右,parent->bf++; 新增在左,parent->bf–:
2、更新后,parent->bf == 1 r -1,说明parent插入前的平衡因子是0,说明左右子树高度相等,插入后有一边高,parent高度变了,需要继续往上更新
3、更新后,parent->bf == 0,说明parent插入前的平衡因子是1 r -1,说明左右子树一边高-边低,插入后两边一样高,插入填上了矮了那边,parent所在子树高度不变,不需要继续往上更新
4更新后,parent->bf == 2 r -2,说明parent插入前的平衡因子是1 or -1,已经平衡临界值,插入变成2 or -2,打破平衡,parent所在子树需要旋转处理。
5更新后,parent->bf > 2 r< -2的值,不可能,如果存在,则说明插入前就不是AVL树,需要去检查之前操作的问题.
AVL树四种旋转情况
左单旋
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
Node* ppNode = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
//1.parent是整棵树的根
//2.parent是子树的根
if (parent == _root)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_parent = ppNode;
}
subR->_bf = parent->_bf = 0;
}
右单旋
//右单旋
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
Node* ppNode = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (ppNode == nullptr)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
subL->_parent = ppNode;
}
parent->_bf = subL->_bf = 0;
}
先左单旋再右单旋
文章来源:https://www.toymoban.com/news/detail-673906.html
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
//旋转完后的根节点
subLR->_bf = 0;
if (bf == 1)
{
subL->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 0;
subL->_bf = 1;
}
else if (bf == 0)
{
parent->_bf = 0;
subL->_bf = 0;
}
else
{
assert(false);
}
}
先右单旋后左单旋
文章来源地址https://www.toymoban.com/news/detail-673906.html
//右左双旋
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
subRL->_bf = 0;
if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
subR->_bf = 1;
parent->_bf = 0;
}
else if (bf == 0)
{
subR->_bf = 0;
parent->_bf = 0;
}
else
{
assert(false);
}
}
元素的插入及控制平衡
typedef AVLTreeNode<K, V> Node;
bool Insert(const pair<K, V>& kv)
{
//如果当前树为空直接设置节点
if (_root == NULL)
{
_root = new Node(kv);
return true;
}
//需要有指针记录上一个移动位置
Node* cur = _root;
Node* parent = nullptr;
//寻找合适位置插入
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//直接插入节点并设置它的指向
cur = new Node(kv);
if (parent->_kv.first < kv.first)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
//控制平衡
//1.更新平衡因子
while (parent)
{
if (parent->_right == cur)
{
parent->_bf++;
}
else
{
parent->_bf--;
}
if (parent->_bf == 0)
{
break;
}
else if (abs(parent->_bf) == 1)
{ //如果为1整体向上移动再次调增平衡
parent = parent->_parent;
cur = cur->_parent;
}
else if (abs(parent->_bf) == 2)
{
//说明parent所在子树已经不平衡了,需要旋转处理
if (parent->_bf == 2 && cur->_bf == 1)
{
RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == -1)
{
RotateR(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1)
{
RotateLR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)
{
RotateRL(parent);
}
else
{
//预防调整出错情况
assert(false);
}
break;
}
else
{
//预防调整出错情况
assert(false);
}
}
return true;
}
判断最后节点是否平衡
//判断是否平衡
bool _IsBanlance(Node* root)
{
if (root == NULL)
{
return true;
}
int leftH = _Height(root->_left);
int rightH = _Height(root->_right);
if (rightH - leftH != root->_bf)
{
cout << root->_kv.first << "节点平衡因子异常" << endl;
return false;
}
return abs(leftH - rightH) < 2
&& _IsBanlance(root->_left)
&& _IsBanlance(root->_right);
}
//计算它的最大高度
int _Height(Node* root)
{
if (root == nullptr)
{
return 0;
}
int leftH = _Height(root->_left);
int rightH = _Height(root->_right);
return max(leftH, rightH) + 1;
}
到了这里,关于【C++】AVL树(高度平衡二叉树)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!