改进YOLO系列:11.添加CrissCrossAttention注意力机制

这篇具有很好参考价值的文章主要介绍了改进YOLO系列:11.添加CrissCrossAttention注意力机制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. CrissCrossAttention注意力机制论文

论文题目:CCNet: Criss-Cross Attention for Semantic
Segmentation
论文链接:CCNet: Criss-Cross Attention for Semantic
Segmentation文章来源地址https://www.toymoban.com/news/detail-673918.html

2. CrissCrossAttenti

到了这里,关于改进YOLO系列:11.添加CrissCrossAttention注意力机制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLO算法改进指南【中阶改进篇】:1.添加SE-Net注意力机制

    SE-Net 是 ImageNet 2017(ImageNet 收官赛)的冠军模型,是由WMW团队发布。具有复杂度低,参数少和计算量小的优点。且SENet 思路很简单,很容易扩展到已有网络结构如 Inception 和 ResNet 中。 已经有很多工作在空间维度上来提升网络的性能,如 Inception 等,而 SENet 将关注点放在了特

    2023年04月24日
    浏览(56)
  • YOLO算法改进指南【中阶改进篇】:3.添加SA-Net注意力机制

    论文地址 :SA-Net: Shuffle Attention for Deep Convolutional Neural Networks 开源代码 :https://github.com/wofmanaf/SA-Net 当前的 CNN 中的 attention 机制主要包括:channel attention 和 spatial attention,当前一些方法(GCNet 、CBAM 等)通常将二者集成,容易产生 converging difficulty 和 heavy computation burden 的问题

    2023年04月26日
    浏览(70)
  • YOLOv5、v8改进:CrissCrossAttention注意力机制

    目录 1.简介 2. yolov5添加方法: 2.1common.py构建CrissCrossAttention模块 2.2yolo.py中注册 CrissCrossAttention模块 2.3修改yaml文件。 这是ICCV2019的用于语义分割的论文,可以说和CVPR2019的DANet遥相呼应。 和DANet一样,CCNet也是想建模像素之间的long range dependencies,来做更加丰富的contextual info

    2024年02月11日
    浏览(48)
  • 改进YOLO系列 | CVPR2023最新注意力 | BiFormer:视觉变换器与双层路由注意力

    作为视觉变换器的核心构建模块,注意力是一种强大的工具,可以捕捉长程依赖关系。然而,这种强大的功能付出了代价:计算负担和内存占用巨大,因为需要在所有空间位置上计算成对的令牌交互。一系列的研究尝试通过引入手工制作和与内容无关的稀疏性来缓解这个问题

    2024年02月11日
    浏览(54)
  • YOLOv5、v7改进之三十一:CrissCrossAttention注意力机制

     前 言: 作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或

    2024年02月10日
    浏览(53)
  • YOLOv5改进系列(1)——添加SE注意力机制

    从这篇开始我们进入YOLOv5改进系列。那就先从最简单的添加注意力机制开始吧!( ̄︶ ̄)↗ 【YOLOv5改进系列】前期回顾: YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析 目录

    2024年02月03日
    浏览(59)
  • YOLOv5改进系列(26)——添加RFAConv注意力卷积(感受野注意力卷积运算)

    【YOLOv5改进系列】前期回顾: YOLOv5改进系列(0)——重要性能指标与训练结果评价及分析 YOLOv5改进系列(1)——添加SE注意力机制

    2024年01月17日
    浏览(60)
  • 改进YOLO系列 | GhostNetV2: 用长距离注意力增强低成本运算 | 更换骨干网络之GhostNetV2

    *包含YOLOv5、YOLOv7、YOLOv7-Tiny 的 yaml 文件 轻量级卷积神经网络(CNN)是专门为在移动设备上具有更快推理速度的应用而设计的。卷积操作只能捕捉窗口区域内的局部信息,这防止了性能的进一步提高。将自注意力引入卷积可以很好地捕捉全局信息,但这将大大拖累实际速度。

    2023年04月17日
    浏览(54)
  • 【目标检测】yolov5改进系列:主干网络中添加SE注意力机制网络

    写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 CNN网络中,图像或者说特征图Feature Map的特征主要分为空间特征(Spatial)和通道(Channel)特征。对于空间

    2023年04月16日
    浏览(50)
  • [YOLOv7/YOLOv5系列算法改进NO.4]添加ECA通道注意力机制

     前      言 作为当前先进的深度学习目标检测算法YOLOv5,已经集合了大量的trick,但是在处理一些复杂背景问题的时候,还是容易出现错漏检的问题。此后的系列文章,将重点对YOLOv5的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的

    2024年02月05日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包