C++卷积神经网络文章来源地址https://www.toymoban.com/news/detail-674366.html
#include"TP_NNW.h"
#include<iostream>
#pragma warning(disable:4996)
using namespace std;
using namespace mnist;
float* SGD(Weight* W1, Weight& W5, Weight& Wo, float** X)
{
Vector2 ve(28, 28);
float* temp = new float[10];
Vector2 Cout;
float*** y1 = Conv(X, ve, Cout, W1, 20);
for (int i = 0; i < 20; i++)
for (int n = 0; n < Cout.height; n++)
for (int m = 0; m < Cout.width; m++)
y1[i][n][m] = ReLU(y1[i][n][m]);
float*** y2 = y1;
Vector2 Cout2;
float*** y3 = Pool(y1, Cout, 20, Cout2);
float* y4 = reshape(y3, Cout2, 20, true);
float* v5 = dot(W5, y4);
float* y5 = ReLU(v5, W5);
float* v = dot(Wo, y5);
float* y = Softmax(v, Wo);
for (int i = 0; i < Wo.len.height; i++)
temp[i] = y[i];
return temp;
}
void trainSGD(Weight* W1, Weight& W5, Weight& Wo, FILE* fp, FILE* tp)
{
Vector2 ve(28, 28);
unsigned char* reader = new unsigned char[ve.height * ve.width];
float** X = apply2(ve.height, ve.width);
unsigned char hao;
hot_one<char> D(10);
Weight* momentum1 = new Weight[20];//动量
Weight momentum5;
Weight momentumo;
Weight* dW1 = new Weight[20];//动量
Weight dW5;
Weight dWo;
for (int i = 0; i < 20; i++)
W1[0] >> momentum1[i];
W5 >> momentum5;
Wo >> momentumo;
int N = 8000;//训练集取前8000个
int bsize = 100;//100个纠正一次
int b_len;
int* blist = bList(bsize, N, &b_len);
for (int batch = 0; batch < b_len; batch++)
{
for (int i = 0; i < 20; i++)
W1[0] >> dW1[i];
W5 >> dW5;
Wo >> dWo;
int begins = blist[batch];
for (int k = begins; k < begins + bsize && k < N; k++)
{
::fread(reader, sizeof(unsigned char), ve.height * ve.width, fp);//读取图像
Toshape2(X, reader, ve);//组合成二维数组
Vector2 Cout;//储存卷积后数组的尺寸 20
float*** y1 = Conv(X, ve, Cout, W1, 20);//卷积
for (int i = 0; i < 20; i++)
for (int n = 0; n < Cout.height; n++)
{
for (int m = 0; m < Cout.width; m++)
{
y1[i][n][m] = ReLU(y1[i][n][m]);//通过ReLU函数
}
}
float*** y2 = y1;//给变量y2
Vector2 Cout2;//记录池化后的尺寸 10
float*** y3 = Pool(y1, Cout, 20, Cout2);//池化层
float* y4 = reshape(y3, Cout2, 20, true);//作为神经元输入
float* v5 = dot(W5, y4);//矩阵乘法
float* y5 = ReLU(v5, W5);//ReLU函数
float* v = dot(Wo, y5);//举证乘法
float* y = Softmax(v, Wo);//soft分类
::fread(&hao, sizeof(unsigned char), 1, tp);//读取标签
D.re(hao);
float* e = new float[10];
for (int i = 0; i < 10; i++)
e[i] = ((float)D.one[i]) - y[i];
float* delta = e;
float* e5 = FXCB_err(Wo, delta);
float* delta5 = Delta2(y5, e5, W5);
float* e4 = FXCB_err(W5, delta5);
float*** e3 = Toshape3(e4, 20, Cout2);
float*** e2 = apply3(20, Cout.height, Cout.width);
Weight one(2, 2, ones);
/*for (int i = 0; i < 20; i++)
{
::printf("第%d层\n", i);
for (int n = 0; n < Cout2.height; n++)
{
for (int m = 0; m < Cout2.width; m++)
::printf("%0.3f ", e3[i][n][m]);
puts("");
}
}
getchar();*/
for (int i = 0; i < 20; i++)//---------------------------------
kron(e2[i], Cout, e3[i], Cout2, one.WG, one.len);
/*for (int i = 0; i < 20; i++)
{
::printf("第%d层\n", i);
for (int n = 0; n < Cout.height; n++)
{
for (int m = 0; m < Cout.width; m++)
::printf("%f ", e2[i][n][m]);
puts("");
}
}
getchar();*/
float*** delta2 = apply3(20, Cout.height, Cout.width);
for (int i = 0; i < 20; i++)
for (int n = 0; n < Cout.height; n++)
for (int m = 0; m < Cout.width; m++)
delta2[i][n][m] = (y2[i][n][m] > 0) * e2[i][n][m];
float*** delta_x = (float***)malloc(sizeof(float***) * 20);
Vector2 t1;
for (int i = 0; i < 20; i++)
delta_x[i] = conv2(X, ve, delta2[i], Cout, &t1);
for (int i = 0; i < 20; i++)
for (int n = 0; n < t1.height; n++)
for (int m = 0; m < t1.width; m++)
dW1[i].WG[n][m] += delta_x[i][n][m];
dW5.re(delta5, y4, 1);
dWo.re(delta, y5, 1);
Free3(delta_x, 20, t1.height);
Free3(delta2, 20, Cout.height);
one.release();
Free3(e2, 20, Cout.height);
Free3(e3, 20, Cout2.height);
free(e4);
free(delta5);
free(e5);
free(v5);
delete e;
free(y5);
free(v);
free(y);
Free3(y1, 20, Cout.height);
free(y4);
}
for (int i = 0; i < 20; i++)
dW1[i] /= (bsize);
dW5 /= (bsize);
dWo /= (bsize);
for (int i = 0; i < 20; i++)
for (int n = 0; n < W1[0].len.height; n++)
for (int m = 0; m < W1[0].len.width; m++)
{
momentum1[i].WG[n][m] = ALPHA * dW1[i].WG[n][m] + BETA * momentum1[i].WG[n][m];
W1[i].WG[n][m] += momentum1[i].WG[n][m];
}
for (int n = 0; n < W5.len.height; n++)
for (int m = 0; m < W5.len.width; m++)
momentum5.WG[n][m] = ALPHA * dW5.WG[n][m] + BETA * momentum5.WG[n][m];
W5 += momentum5;
for (int n = 0; n < Wo.len.height; n++)
for (int m = 0; m < Wo.len.width; m++)
momentumo.WG[n][m] = ALPHA * dWo.WG[n][m] + BETA * momentumo.WG[n][m];
Wo += momentumo;
}
for (int i = 0; i < 20; i++)
{
momentum1[i].release();
dW1[i].release();
}
momentum5.release();
momentumo.release();
Free2(X, ve.height);
free(blist);
delete reader;
D.release();
dW5.release();
dWo.release();
return;
}
void trainSGD1(Weight* W1, Weight& W5, Weight& Wo, FILE* fp, FILE* tp)
{
Vector2 ve(28, 28);
unsigned char* reader = new unsigned char[ve.height * ve.width];
float** X = apply2(ve.height, ve.width);
unsigned char hao;
hot_one<char> D(10);
Weight* momentum1 = new Weight[20];//动量
Weight momentum5;
Weight momentumo;
Weight* dW1 = new Weight[20];//动量
Weight dW5;
Weight dWo;
for (int i = 0; i < 20; i++)
W1[0] >> momentum1[i];
W5 >> momentum5;
Wo >> momentumo;
int N = 108;//训练集取前8000个
int bsize = 12;//100个纠正一次
int b_len;
int* blist = bList(bsize, N, &b_len);
for (int batch = 0; batch < b_len; batch++)
{
for (int i = 0; i < 20; i++)
W1[0] >> dW1[i];
W5 >> dW5;
Wo >> dWo;
int begins = blist[batch];
for (int k = begins; k < begins + bsize && k < N; k++)
{
::fread(reader, sizeof(unsigned char), ve.height * ve.width, fp);//读取图像
Toshape2(X, reader, ve);//组合成二维数组
Vector2 Cout;//储存卷积后数组的尺寸 20
float*** y1 = Conv(X, ve, Cout, W1, 20);//卷积
for (int i = 0; i < 20; i++)
for (int n = 0; n < Cout.height; n++)
{
for (int m = 0; m < Cout.width; m++)
{
y1[i][n][m] = ReLU(y1[i][n][m]);//通过ReLU函数
}
}
float*** y2 = y1;//给变量y2
Vector2 Cout2;//记录池化后的尺寸 10
float*** y3 = Pool(y1, Cout, 20, Cout2);//池化层
float* y4 = reshape(y3, Cout2, 20, true);//作为神经元输入
float* v5 = dot(W5, y4);//矩阵乘法
float* y5 = ReLU(v5, W5);//ReLU函数
float* v = dot(Wo, y5);//举证乘法
float* y = Softmax(v, Wo);//soft分类
::fread(&hao, sizeof(unsigned char), 1, tp);//读取标签
D.re(hao);
float* e = new float[10];
for (int i = 0; i < 10; i++)
e[i] = ((float)D.one[i]) - y[i];
float* delta = e;
float* e5 = FXCB_err(Wo, delta);
float* delta5 = Delta2(y5, e5, W5);
float* e4 = FXCB_err(W5, delta5);
float*** e3 = Toshape3(e4, 20, Cout2);
float*** e2 = apply3(20, Cout.height, Cout.width);
Weight one(2, 2, ones);
/*for (int i = 0; i < 20; i++)
{
::printf("第%d层\n", i);
for (int n = 0; n < Cout2.height; n++)
{
for (int m = 0; m < Cout2.width; m++)
::printf("%0.3f ", e3[i][n][m]);
puts("");
}
}
getchar();*/
for (int i = 0; i < 20; i++)//---------------------------------
kron(e2[i], Cout, e3[i], Cout2, one.WG, one.len);
/*for (int i = 0; i < 20; i++)
{
::printf("第%d层\n", i);
for (int n = 0; n < Cout.height; n++)
{
for (int m = 0; m < Cout.width; m++)
::printf("%f ", e2[i][n][m]);
puts("");
}
}
getchar();*/
float*** delta2 = apply3(20, Cout.height, Cout.width);
for (int i = 0; i < 20; i++)
for (int n = 0; n < Cout.height; n++)
for (int m = 0; m < Cout.width; m++)
delta2[i][n][m] = (y2[i][n][m] > 0) * e2[i][n][m];
float*** delta_x = (float***)malloc(sizeof(float***) * 20);
Vector2 t1;
for (int i = 0; i < 20; i++)
delta_x[i] = conv2(X, ve, delta2[i], Cout, &t1);
for (int i = 0; i < 20; i++)
for (int n = 0; n < t1.height; n++)
for (int m = 0; m < t1.width; m++)
dW1[i].WG[n][m] += delta_x[i][n][m];
dW5.re(delta5, y4, 1);
dWo.re(delta, y5, 1);
Free3(delta_x, 20, t1.height);
Free3(delta2, 20, Cout.height);
one.release();
Free3(e2, 20, Cout.height);
Free3(e3, 20, Cout2.height);
free(e4);
free(delta5);
free(e5);
free(v5);
delete e;
free(y5);
free(v);
free(y);
Free3(y1, 20, Cout.height);
free(y4);
}
for (int i = 0; i < 20; i++)
dW1[i] /= (bsize);
dW5 /= (bsize);
dWo /= (bsize);
for (int i = 0; i < 20; i++)
for (int n = 0; n < W1[0].len.height; n++)
for (int m = 0; m < W1[0].len.width; m++)
{
momentum1[i].WG[n][m] = ALPHA * dW1[i].WG[n][m] + BETA * momentum1[i].WG[n][m];
W1[i].WG[n][m] += momentum1[i].WG[n][m];
}
for (int n = 0; n < W5.len.height; n++)
for (int m = 0; m < W5.len.width; m++)
momentum5.WG[n][m] = ALPHA * dW5.WG[n][m] + BETA * momentum5.WG[n][m];
W5 += momentum5;
for (int n = 0; n < Wo.len.height; n++)
for (int m = 0; m < Wo.len.width; m++)
momentumo.WG[n][m] = ALPHA * dWo.WG[n][m] + BETA * momentumo.WG[n][m];
Wo += momentumo;
}
for (int i = 0; i < 20; i++)
{
momentum1[i].release();
dW1[i].release();
}
momentum5.release();
momentumo.release();
Free2(X, ve.height);
free(blist);
delete reader;
D.release();
dW5.release();
dWo.release();
return;
}
float rand1()
{
float temp = (rand() % 20) / (float)10;
if (temp < 0.0001)
temp = 0.07;
temp *= (rand() % 2 == 0) ? -1 : 1;
return temp * 0.01;
}
float rand2()
{
float temp = (rand() % 10) / (float)10;
float ret = (2 * temp - 1) * sqrt(6) / sqrt(360 + 2000);
if (ret < 0.0001 && ret>-0.0001)
ret = 0.07;
return ret;
}
float rand3()
{
float temp = (rand() % 10) / (float)10;
float ret = (2 * temp - 1) * sqrt(6) / sqrt(10 + 100);
if (ret < 0.0001 && ret>-0.0001)
ret = 0.07;
return ret;
}
void train()
{
FILE* fp = fopen("t10k-images.idx3-ubyte", "rb");
FILE* tp = fopen("t10k-labels.idx1-ubyte", "rb");
int rdint;
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集幻数:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集数量:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集高度:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集宽度:%d\n", ReverseInt(rdint));
int start1 = ftell(fp);
::fread(&rdint, sizeof(int), 1, tp);
::printf("标签幻数:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, tp);
::printf("标签数量:%d\n", ReverseInt(rdint));
int start2 = ftell(tp);
Weight* W1 = new Weight[20];
WD(W1, 9, 9, 20, rand1);
Weight W5(100, 2000, rand2);
Weight Wo(10, W5.len.height, rand3);
for (int k = 0; k < 3; k++)
{
trainSGD(W1, W5, Wo, fp, tp);
fseek(fp, start1, 0);
fseek(tp, start2, 0);
::printf("第%d次训练结束\n", k + 1);
}
fclose(fp);
fclose(tp);
fp = fopen("mnist_Weight.acp", "wb");
for (int i = 0; i < 20; i++)
W1[i].save(fp);
W5.save(fp);
Wo.save(fp);
fclose(fp);
::printf("训练完成");
getchar();
}
void train1()
{
FILE* fp = fopen("out_img.acp", "rb");
FILE* tp = fopen("out_label.acp", "rb");
int rdint;
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集幻数:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集数量:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集高度:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集宽度:%d\n", ReverseInt(rdint));
int start1 = ftell(fp);
::fread(&rdint, sizeof(int), 1, tp);
::printf("标签幻数:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, tp);
::printf("标签数量:%d\n", ReverseInt(rdint));
int start2 = ftell(tp);
Weight* W1 = new Weight[20];
WD(W1, 9, 9, 20, rand1);
Weight W5(100, 2000, rand2);
Weight Wo(10, W5.len.height, rand3);
for (int k = 0; k < 1000; k++)
{
trainSGD1(W1, W5, Wo, fp, tp);
fseek(fp, start1, 0);
fseek(tp, start2, 0);
::printf("第%d次训练结束\n", k + 1);
}
fclose(fp);
fclose(tp);
fp = fopen("mnist_Weight.acp", "wb");
for (int i = 0; i < 20; i++)
W1[i].save(fp);
W5.save(fp);
Wo.save(fp);
fclose(fp);
::printf("训练完成");
getchar();
}
void test()
{
FILE* fp = fopen("mnist_Weight.acp", "rb");
Weight* W1 = new Weight[20];
WD(W1, 9, 9, 20, rand1);
Weight W5(100, 2000, rand1);
Weight Wo(10, W5.len.height, rand1);
for (int i = 0; i < 20; i++)
W1[i].load(fp);
W5.load(fp);
Wo.load(fp);
fclose(fp);
fp = fopen("t10k-images.idx3-ubyte", "rb");
FILE* tp = fopen("t10k-labels.idx1-ubyte", "rb");
int rdint;
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集幻数:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集数量:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集高度:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集宽度:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, tp);
::printf("标签幻数:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, tp);
::printf("标签数量:%d\n", ReverseInt(rdint));
unsigned char* res = new unsigned char[28 * 28];
float** X = apply2(28, 28);
unsigned char biaoqian;
Vector2 t2828 = Vector2(28, 28);
for (int i = 0; i < 50; i++)
{
::fread(res, sizeof(unsigned char), 28 * 28, fp);
Toshape2(X, res, 28, 28);
print(X, t2828);
float* h = SGD(W1, W5, Wo, X);//带入神经网络
int c = -1;
for (int i = 0; i < 10; i++)
{
if (h[i] > 0.85)
{
c = i;
break;
}
}
::fread(&biaoqian, sizeof(unsigned char), 1, tp);
::printf("正确结果应当为“%d”, 神经网络识别为“%d” \n", biaoqian, c);
}
}
void sb()
{
Weight* W1;
Weight W5(100, 2000, rand2);
Weight Wo(10, W5.len.height, rand3);
//::printf("加载权重完毕\n");
Vector2 out;
char path[256];
for (int r = 0; r < 4; r++)
{
sprintf(path, "acp%d.png", r);
float** img = Get_data_by_Mat(path, out);
//print(img, out);
float* h = SGD(W1, W5, Wo, img);//带入神经网络
int c = -1;
float x = 0;
for (int i = 0; i < 10; i++)
{
if (h[i] > 0.85 && h[i] > x)
{
x = h[i];
c = i;
}
}
::printf("%d ", c);
Free2(img, out.height);
free(h);
remove(path);
}
puts("");
}
void sb(char* path)
{
Weight* W1 = new Weight[20];
Weight W5(100, 2000, rand2);
Weight Wo(10, W5.len.height, rand3);
FILE* fp = fopen("mnist_Weight.acp", "rb");
puts("开始加载权重");
WD(W1, 9, 9, 20, rand1);
for (int i = 0; i < 20; i++)
W1[i].load(fp);
W5.load(fp);
Wo.load(fp);
fclose(fp);
::printf("加载权重完毕\n");
Vector2 out;
float** img = Get_data_by_Mat(path, out);
printf("图像载入完毕");
//print(img, out);
float* h = SGD(W1, W5, Wo, img);//带入神经网络
int c = -1;
float max = -1;
for (int i = 0; i < 10; i++)
{
::printf("%f\n", h[i]);
/*if (h[i] > 0.65 && h[i] > x)
{
x = h[i];
c = i;
}*/
if (max< h[i])
{
max = h[i];
c = i;
}
}
::printf("神经网络认为它是数字-->%d 相似度为:%f", c, max);
Free2(img, out.height);
free(h);
}
bool thank(int x1,int x2, int y1, int y2, int z1, int z2 )
{
int dis = 0;
int xx = (x1 - x2);
dis += xx * xx;
xx = (y1 - y2);
dis += xx * xx;
xx = (z1 - z2);
dis += xx * xx;
dis = (int)sqrt(dis);
if (dis < 100)
return true;
return false;
}
void qg(char* path)
{
::printf(path);
::printf("识别为:");
//Mat img = imread(path);
CImage img;
img.Load(path);
//Vec3b yes = Vec3b(204, 198, 204);
CImage sav;// = Mat(120, 80, CV_8UC3);
sav.Create(120, 80, 24);
ResizeCImage(img, img.GetWidth() * 10, img.GetHeight() * 10);
int XS = img.GetBPP() / 8;
int pitch = img.GetPitch();
//resize(img, img, Size(img.cols * 10, img.rows * 10));
unsigned char* rgb = (unsigned char*)img.GetBits();
for (int i = 0; i < img.GetHeight(); i++)
for (int j = 0; j < img.GetWidth(); j++)
{
//Vec3b rgb = img.at<Vec3b>(i, j);
int x1= *(rgb + (j * XS) + (i * pitch) + 0);
int y1 = *(rgb + (j * XS) + (i * pitch) + 1);
int z1 = *(rgb + (j * XS) + (i * pitch) + 2);
if (thank(x1, 204, y1, 198, z1, 204))
{
*(rgb + (j * XS) + (i * pitch) + 0) = 255;
*(rgb + (j * XS) + (i * pitch) + 1) = 255;
*(rgb + (j * XS) + (i * pitch) + 2) = 255;
//img.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
}
/*else
img.at<Vec3b>(i, j) = Vec3b(0, 0, 0);*/
}
/*char p[256];
for (int k = 0; k < 4; k++)
{
sprintf(p, "acp%d.png", k);
for (int i = 35 + (k * 80); i < 115 + (k * 80); i++)
for (int j = 30; j < 150; j++)
sav.at<Vec3b>(j - 30, i - (35 + (k * 80))) = img.at<Vec3b>(j, i);
imwrite(p, sav);
}
img.release();
sav.release();*/
sb();
}
void test1()
{
FILE* fp = fopen("mnist_Weight.acp", "rb");
Weight* W1 = new Weight[20];
WD(W1, 9, 9, 20, rand1);
Weight W5(100, 2000, rand1);
Weight Wo(10, W5.len.height, rand1);
for (int i = 0; i < 20; i++)
W1[i].load(fp);
W5.load(fp);
Wo.load(fp);
fclose(fp);
fp = fopen("out_img.acp", "rb");
FILE* tp = fopen("out_label.acp", "rb");
int rdint;
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集幻数:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集数量:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集高度:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, fp);
::printf("训练集宽度:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, tp);
::printf("标签幻数:%d\n", ReverseInt(rdint));
::fread(&rdint, sizeof(int), 1, tp);
::printf("标签数量:%d\n", ReverseInt(rdint));
unsigned char* res = new unsigned char[28 * 28];
float** X = apply2(28, 28);
unsigned char biaoqian;
Vector2 t2828 = Vector2(28, 28);
for (int i = 0; i < 10; i++)
{
::fread(res, sizeof(unsigned char), 28 * 28, fp);
Toshape2(X, res, 28, 28);
print(X, t2828);
float* h = SGD(W1, W5, Wo, X);//带入神经网络
int c = -1;
for (int i = 0; i < 10; i++)
{
if (h[i] > 0.85)
{
c = i;
break;
}
}
::fread(&biaoqian, sizeof(unsigned char), 1, tp);
::printf("正确结果应当为“%d”, 神经网络识别为“%d” \n", biaoqian, c);
}
}
void main(int argc, char** argv)
{
//train();//请先调用这个训练,训练结束后就可以直接加载权重了
if (argc > 1)
{
sb(argv[1]);
getchar();
}
}
#include"TP_NNW.h"
#include<iostream>
#pragma warning(disable:4996)
void Weight::apply(int H, int W)
{
fz = true;
this->len.height = H;
this->len.width = W;
this->WG = apply2(H, W);//申请内存
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++)
this->WG[i][j] = Get_rand();//得到随机值
}
void Weight::apply(int H, int W, float(*def)())
{
fz = true;
this->len.height = H;
this->len.width = W;
this->WG = apply2(H, W);
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++)
this->WG[i][j] = def();
}
Weight::~Weight()
{
this->release();
}
Weight::Weight(int H/*高度*/, int W/*宽度*/)
{
W = W <= 0 ? 1 : W;//防止出现0和负数
H = H <= 0 ? 1 : H;//防止出现0和负数
fz = true;
this->apply(H, W);
}
Weight::Weight(int H/*高度*/, int W/*宽度*/, float(*def)())
{
W = W <= 0 ? 1 : W;
H = H <= 0 ? 1 : H;
fz = true;
this->apply(H, W, def);
}
void Weight::re(float* delta, float* inp, float alpha)
{
for (int i = 0; i < this->len.height; i++)
{
for (int j = 0; j < this->len.width; j++)
this->WG[i][j] += alpha * delta[i] * inp[j];
}
}
void Weight::save(FILE* fp)
{
for (int i = 0; i < this->len.height; i++)
for (int j = 0; j < this->len.width; j++)
fwrite(&this->WG[i][j], sizeof(float), 1, fp);
}
void Weight::load(FILE* fp)
{
for (int i = 0; i < this->len.height; i++)
for (int j = 0; j < this->len.width; j++)
fread(&this->WG[i][j], sizeof(float), 1, fp);
}
void Weight::release()
{
if (this->fz)
{
Free2(this->WG, this->len.height);
//free(this->WG);
}
this->fz = false;
}
void Weight::operator >> (Weight& temp)
{
temp.release();
//free(temp.WG);
temp.apply(this->len.height, this->len.width, zeros);
}
void Weight::operator+=(Weight& temp)
{
for (int i = 0; i < this->len.height; i++)
for (int j = 0; j < this->len.width; j++)
this->WG[i][j] += temp.WG[i][j];
}
//void Weight::operator/=(int & temp)
//{
// for (int i = 0; i < this->len.height; i++)
// for (int j = 0; j < this->len.width; j++)
// this->WG[i][j] /= temp;
//}
void Weight::operator/=(int temp)
{
for (int i = 0; i < this->len.height; i++)
for (int j = 0; j < this->len.width; j++)
this->WG[i][j] /= temp;
}
void Weight::operator<<(Weight& temp)
{
Free2(this->WG, this->len.height);
this->len.height = temp.len.height;
this->len.width = temp.len.width;
this->WG = temp.WG;
}
void WD(Weight* WGS, int H, int W, int len)
{
for (int i = 0; i < len; i++)
{
WGS[i].apply(H, W);
}
}
void WD(Weight* WGS, int H, int W, int len, float(*def)())
{
for (int i = 0; i < len; i++)
{
WGS[i].apply(H, W, def);
}
}
float zeros()
{
return 0;
}
void print(float* y, int y_len)
{
for (int i = 0; i < y_len; i++)
{
printf("%0.2f ", y[i]);
//printf("%d ", y[i]>0?1:0);
}
puts("");
}
void print(float* y, Vector2& vec)
{
print(y, vec.height);
}
void print(float** y, Vector2& vec)
{
for (int i = 0; i < vec.height; i++)
print(y[i], vec.width);
}
void print(char* y, int y_len)
{
for (int i = 0; i < y_len; i++)
{
printf("%d ", y[i]);
}
puts("");
}
void print(char** y, Vector2& vec)
{
for (int i = 0; i < vec.height; i++)
print(y[i], vec.width);
}
void print(Weight& w)
{
print(w.WG, w.len);
}
void print(Weight* w, int len)
{
for (int i = 0; i < len; i++)
{
printf("\n第%d层\n", i + 1);
print(w[i]);
}
}
float** apply2(int H, int W)
{
float** temp = (float**)malloc(sizeof(float**) * H);
for (int i = 0; i < H; i++)
temp[i] = (float*)malloc(sizeof(float*) * W);
return temp;
}
float*** apply3(int P, int H/*高度*/, int W/*宽度*/)
{
float*** temp = (float***)malloc(sizeof(float***) * P);
for (int i = 0; i < P; i++)
temp[i] = apply2(H, W);
return temp;
}
char** apply2_char(int H, int W)
{
char** temp = (char**)malloc(sizeof(float**) * H);
for (int i = 0; i < H; i++)
temp[i] = (char*)malloc(sizeof(float*) * W);
return temp;
}
float ones()
{
return 1;
}
float*** Conv(float** X, Vector2& inp, Vector2& out, Weight* W, int W_len)
{
out.height = inp.height - W[0].len.height + 1;
out.width = inp.width - W[0].len.width + 1;
float*** temp = (float***)malloc(sizeof(float***) * W_len);
for (int k = 0; k < W_len; k++)
temp[k] = conv2(X, inp, W[k].WG, W[0].len);
return temp;
}
float*** Pool(float*** y, Vector2& inp, int P, Vector2& out)
{
int h = inp.height / 2, w = inp.width / 2;
out.height = h;
out.width = w;
float*** temp = apply3(P, h, w);
float** filter = apply2(2, 2);
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)
filter[i][j] = 0.25;
for (int k = 0; k < P; k++)
{
Vector2 len;
Vector2 t22 = Vector2(2, 2);
float** img = conv2(y[k], inp, filter, t22, &len);
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
temp[k][i][j] = img[i * 2][j * 2];
Free2(img, len.height);
}
Free2(filter, 2);
return temp;
}
float* apply1(int H)
{
float* temp = (float*)malloc(sizeof(float*) * H);
return temp;
}
char* apply1_char(int H)
{
char* temp = (char*)malloc(sizeof(char*) * H);
return temp;
}
float Get_rand()
{
float temp = (float)(rand() % 10) / (float)10;
return rand() % 2 == 0 ? temp : -temp;
}
float Sigmoid(float x)
{
return 1 / (1 + exp(-x));
}
float* Sigmoid(float* x, Weight& w)
{
return Sigmoid(x, w.len.height);
}
float* Sigmoid(float* x, int height)
{
float* y = (float*)malloc(sizeof(float*) * height);
for (int i = 0; i < height; i++)
y[i] = Sigmoid(x[i]);
return y;
}
float ReLU(float x)
{
return x > 0 ? x : 0;
}
float* ReLU(float* x, Weight& w)
{
return ReLU(x, w.len.height);
}
float* ReLU(float* x, int height)
{
float* y = (float*)malloc(sizeof(float*) * height);
for (int i = 0; i < height; i++)
y[i] = ReLU(x[i]);
return y;
}
float* Softmax(float* x, Weight& w)
{
return Softmax(x, w.len.height);
}
float dsigmoid(float x)
{
return x * (1 - x);
}
float* Softmax(float* x, int height)
{
float* t = new float[height];
float* ex = new float[height];
float sum = 0;
for (int i = 0; i < height; i++)
{
ex[i] = exp(x[i]);
sum += ex[i];
}
for (int i = 0; i < height; i++)
{
t[i] = ex[i] / sum;
}
delete ex;
return t;
}
float* FXCB_err(Weight& w, float* delta)
{
float* temp = (float*)malloc(sizeof(float*) * w.len.width);
for (int i = 0; i < w.len.width; i++)
temp[i] = 0;
for (int i = 0; i < w.len.width; i++)
for (int j = 0; j < w.len.height; j++)
temp[i] += w.WG[j][i] * delta[j];
return temp;
}
float* Delta1(float* y, float* e, Weight& w)
{
float* temp = (float*)malloc(sizeof(float*) * w.len.height);
for (int i = 0; i < w.len.height; i++)
temp[i] = y[i] * (1 - y[i]) * e[i];
return temp;
}
float* Delta2(float* v, float* e, Weight& w)
{
float* temp = (float*)malloc(sizeof(float*) * w.len.height);
for (int i = 0; i < w.len.height; i++)
temp[i] = v[i] > 0 ? e[i] : 0;
return temp;
}
float* dot(Weight& W, float* inp, int* len)
{
float* temp = (float*)malloc(sizeof(float*) * W.len.height);
for (int i = 0; i < W.len.height; i++)
temp[i] = 0;
for (int i = 0; i < W.len.height; i++)
{
for (int j = 0; j < W.len.width; j++)
temp[i] += (W.WG[i][j] * inp[j]);
}
if (len != NULL)
*len = W.len.height;
return temp;
}
char* randperm(int max, int count)
{
char* temp = new char[count] {0};
for (int i = 0; i < count; i++)
{
while (1)
{
char t = rand() % max;
bool nothave = true;
for (int j = 0; j < i; j++)
if (t == temp[j])
{
nothave = false;
break;
}
if (nothave)
{
temp[i] = t;
break;
}
}
}
return temp;
}
void Dropout(float* y, float ratio, Weight& w)
{
float* ym = new float[w.len.height] {0};
float round = w.len.height * (1 - ratio);
int num = (round - (float)(int)round >= 0.5f ? (int)round + 1 : (int)round);
char* idx = randperm(w.len.height, num);
for (int i = 0; i < num; i++)
{
ym[idx[i]] = (1 / (1 - ratio));
}
for (int i = 0; i < w.len.height; i++)
{
y[i] *= ym[i];
}
delete idx;
delete ym;
}
float** conv2(float** x, Vector2& x_len, float** fiter, Vector2& fiter_len, Vector2* out_len, int flag, int distance, int fill)
{
switch (flag)
{
case Valid:return VALID(x, x_len.height, x_len.width, fiter, fiter_len.height, fiter_len.width, distance, out_len);
case Same:return SAME(x, x_len.height, x_len.width, fiter, fiter_len.height, fiter_len.width, distance, fill, out_len);
}
return nullptr;
}
float** VALID(float** x, int x_h, int x_w, float** fiter, int fiter_h, int fiter_w, int distance, Vector2* out_len)
{
int h = VALID_out_len(x_h, fiter_h, distance);
int w = VALID_out_len(x_w, fiter_w, distance);
float** temp = apply2(h, w);
float** t = fiter;
if (out_len != NULL)
{
out_len->height = h;
out_len->width = w;
}
for (int i = 0; i < x_h + 1 - fiter_h; i += distance)
for (int j = 0; j < x_w + 1 - fiter_w; j += distance)
{
float count = 0;
for (int n = i; n < i + fiter_h; n++)
for (int m = j; m < j + fiter_w; m++)
{
if (n >= x_h || m >= x_w)
continue;
count += (x[n][m] * t[n - i][m - j]);
}
temp[(i / distance)][(j / distance)] = count;
}
//free(t);
return temp;
}
float** SAME(float** x, int x_h, int x_w, float** fiter, int fiter_h, int fiter_w, int distance, int fill, Vector2* out_len)
{
return nullptr;
}
int VALID_out_len(int x_len, int fiter_len, int distance)
{
float temp = (float)(x_len - fiter_len) / (float)distance;
int t = temp - (int)((float)temp) >= 0.5 ? (int)temp + 1 : (int)temp;
t++;
return t;
}
void show_Weight(Weight& W)
{
for (int i = 0; i < W.len.height; i++)
{
for (int j = 0; j < W.len.width; j++)
{
printf("%0.3f ", W.WG[i][j]);
}
puts("");
}
}
void rot90(Weight& x)
{
int h = x.len.width, w = x.len.height;
x.WG = rot90(x.WG, x.len, true);
x.len.width = w;
x.len.height = h;
}
float** rot90(float** x, Vector2& x_len, bool release)
{
float** temp = apply2(x_len.width, x_len.height);
for (int i = 0; i < x_len.height; i++)
for (int j = 0; j < x_len.width; j++)
{
temp[x_len.width - 1 - j][i] = x[i][j];
}
if (release)
{
Free2(x, x_len.height);
//free(x);
}
return temp;
}
float** rot180(float** x, Vector2& x_len, bool release)
{
float** temp = apply2(x_len.height, x_len.width);
for (int i = 0; i < x_len.height; i++)
{
for (int j = 0; j < x_len.width; j++)
{
temp[x_len.height - 1 - i][x_len.width - 1 - j] = x[i][j];
}
}
if (release)
{
Free2(x, x_len.height);
//free(x);
}
return temp;
}
void ResizeCImage(CImage& image, int newWidth, int newHeight) {
// 创建新的CImage对象,并设置大小
CImage resizedImage;
resizedImage.Create(newWidth, newHeight, image.GetBPP());
// 使用Gdiplus::Graphics将原始图像绘制到新图像上,并进行缩放
SetStretchBltMode(resizedImage.GetDC(), HALFTONE);
image.StretchBlt(resizedImage.GetDC(), 0, 0, newWidth, newHeight);
// 完成绘制后,释放新图像的设备上下文
resizedImage.ReleaseDC();
// 将结果拷贝回原始的CImage对象
image.Destroy();
image.Attach(resizedImage.Detach());
resizedImage.Destroy();
}
float** Get_data_by_Mat(char* filepath, Vector2& out_len)
{
CImage mat;// = cv::imread(filepath, 0);
//cv::resize(mat, mat, cv::Size(28, 28));
mat.Load(filepath);
ResizeCImage(mat, 28, 28);
/*cv::imshow("tt", mat);
cv::waitKey(0);*/
out_len.height = mat.GetHeight();
out_len.width = mat.GetWidth();
float** temp = apply2(mat.GetHeight(), mat.GetWidth());
unsigned char* rgb = (unsigned char*)mat.GetBits();
int pitch = mat.GetPitch();
int hui = 0;
int XS = mat.GetBPP()/8;
for (int i = 0; i < out_len.height; i++)
for (int j = 0; j < out_len.width; j++)
{
hui = 0;
for (int kkk = 0; kkk < 3; kkk++)
{
hui += *(rgb + (j * XS) + (i * pitch) + kkk);
}
hui /= 3;
temp[i][j] = ((float)hui / (float)255);
//temp[i][j] = 1 - temp[i][j];
}
mat.Destroy();
return temp;
}
char** Get_data_by_Mat_char(char* filepath, Vector2& out_len, int threshold)
{
CImage mat;
mat.Load(filepath);
//cv::Mat mat = cv::imread(filepath, 0);
out_len.height = mat.GetHeight();
out_len.width = mat.GetWidth();
char** temp = apply2_char(out_len.height, out_len.width);
unsigned char* rgb = (unsigned char*)mat.GetBits();
int pitch = mat.GetPitch();
int hui = 0;
int XS = mat.GetBPP() / 8;
for (int i = 0; i < out_len.height; i++)
for (int j = 0; j < out_len.width; j++)
{
hui = 0;
for (int kkk = 0; kkk < 3; kkk++)
{
hui += *(rgb + (j * XS) + (i * pitch) + kkk);
}
hui /= 3;
temp[i][j] = hui > threshold ? 0 : 1;
}
mat.Destroy();
return temp;
}
void Get_data_by_Mat(char* filepath, Weight& w)
{
w.WG = Get_data_by_Mat(filepath, w.len);
}
Weight Get_data_by_Mat(char* filepath)
{
Weight temp;
Get_data_by_Mat(filepath, temp);
return temp;
}
Vector2::Vector2()
{
this->height = 0;
this->width = 0;
}
Vector2::Vector2(char height, int width)
{
this->height = height;
this->width = width;
}
XML::XML(FILE* fp, char* name, int layer)
{
this->fp = fp;
this->name = name;
this->layer = layer;
}
void XML::showchild()
{
char reader[500];
while (fgets(reader, 500, this->fp))
{
int len = strlen(reader);
int lay = 0;
for (; lay < len; lay++)
{
if (reader[lay] != '\t')break;
}
if (lay == this->layer)
{
if (reader[lay + 1] == '/')continue;
char show[500];
memset(show, 0, 500);
for (int i = lay + 1; i < len - 2; i++)
{
if (reader[i] == '>')break;
show[i - lay - 1] = reader[i];
}
puts(show);
}
}
fseek(this->fp, 0, 0);
}
void bit::operator=(int x)
{
this->B = x;
}
float* reshape(float** x, int h, int w)
{
float* temp = (float*)malloc(sizeof(float*) * w * h);
int count = 0;
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
{
temp[count++] = x[i][j];
}
return temp;
}
float* reshape(float** x, Vector2& x_len)
{
return reshape(x, x_len.height, x_len.width);
}
float* reshape(float*** x, Vector2& x_len, int P, bool releace)
{
float* temp = apply1(x_len.height * x_len.width * P);
int c = 0;
for (int i = 0; i < P; i++)
for (int n = 0; n < x_len.height; n++)
for (int m = 0; m < x_len.width; m++)
temp[c++] = x[i][n][m];
if (releace)
Free3(x, P, x_len.height);
//free(x);
return temp;
}
int* bList(int distance, int max, int* out_len)
{
int num = (max % distance != 0);
int t = (int)(max / distance);
t += num;
if (out_len != NULL)
*out_len = t;
int* out = (int*)malloc(sizeof(int*) * t);
for (int i = 0; i < t; i++)
{
out[i] = i * distance;
}
return out;
}
void Free2(float** x, int h)
{
for (int i = 0; i < h; i++)
free(x[i]);
free(x);
}
void Free3(float*** x, int p, int h)
{
for (int i = 0; i < p; i++)
for (int j = 0; j < h; j++)
free(x[i][j]);
for (int i = 0; i < p; i++)
free(x[i]);
free(x);
}
void kron(float** out, Vector2& out_len, float** inp, Vector2& inp_len, float** filter, Vector2& filter_len)
{
for (int i = 0; i < inp_len.height; i++)
for (int j = 0; j < inp_len.width; j++)
{
for (int n = i * 2; n < out_len.height && n < ((i * 2) + filter_len.height); n++)
for (int m = (j * 2); m < ((j * 2) + filter_len.width) && m < out_len.width; m++)
{
out[n][m] = inp[i][j] * filter[n - (i * 2)][m - (j * 2)] * 0.25;
}
}
}
char** mnist::Toshape2(char* x, int h, int w)
{
char** temp = apply2_char(h, w);
int c = 0;
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
temp[i][j] = x[c++];
return temp;
}
char** mnist::Toshape2(char* x, Vector2& x_len)
{
return mnist::Toshape2(x, x_len.height, x_len.width);
}
void mnist::Toshape2(char** out, char* x, int h, int w)
{
int c = 0;
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
out[i][j] = x[c++];
}
void mnist::Toshape2(char** out, char* x, Vector2& x_len)
{
mnist::Toshape2(out, x, x_len.height, x_len.width);
}
float** mnist::Toshape2_F(char* x, int h, int w)
{
float** temp = apply2(h, w);
int c = 0;
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
temp[i][j] = ((float)x[c++] / (float)255);
return temp;
}
float** mnist::Toshape2_F(char* x, Vector2& x_len)
{
return mnist::Toshape2_F(x, x_len.height, x_len.width);
}
void mnist::Toshape2(float** out, char* x, int h, int w)
{
int c = 0;
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
out[i][j] = ((float)x[c++] / (float)255);
}
void mnist::Toshape2(float** out, char* x, Vector2& x_len)
{
mnist::Toshape2(out, x, x_len.height, x_len.width);
}
void mnist::Toshape2(float** out, unsigned char* x, int h, int w)
{
int c = 0;
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
{
out[i][j] = ((float)x[c++] / (float)255);
}
}
void mnist::Toshape2(float** out, unsigned char* x, Vector2& x_len)
{
mnist::Toshape2(out, x, x_len.height, x_len.width);
}
float*** mnist::Toshape3(float* x, int P, Vector2& x_len)
{
float*** temp = apply3(P, x_len.height, x_len.width);
int c = 0;
for (int i = 0; i < P; i++)
for (int j = 0; j < x_len.height; j++)
for (int n = 0; n < x_len.width; n++)
temp[i][j][n] = x[c++];
return temp;
}
int mnist::ReverseInt(int i)
{
unsigned char ch1, ch2, ch3, ch4;
ch1 = i & 255;
ch2 = (i >> 8) & 255;
ch3 = (i >> 16) & 255;
ch4 = (i >> 24) & 255;
return((int)ch1 << 24) + ((int)ch2 << 16) + ((int)ch3 << 8) + ch4;
}
#pragma once
#include<Windows.h>
#include<atlimage.h>
#define ALPHA 0.01
#define BETA 0.95
#define RATIO 0.2
void ResizeCImage(CImage& image, int newWidth, int newHeight);
struct bit
{
unsigned B : 1;
void operator=(int x);
};
enum Conv_flag
{
Valid = 0,
Same = 1
};
struct Vector2 {
int height, width;
Vector2();
Vector2(char height, int width);
};
class Weight
{
private:
void apply(int H/*高度*/, int W/*宽度*/);
void apply(int H/*高度*/, int W/*宽度*/, float(*def)());
public:
bool fz;
Vector2 len;
float** WG;
~Weight();
Weight() { fz = false; }
Weight(int H/*高度*/, int W/*宽度*/);
Weight(int H/*高度*/, int W/*宽度*/, float (*def)());
void re(float* delta, float* inp, float alpha = ALPHA);
void save(FILE* fp);
void load(FILE* fp);
void release();
void operator>>(Weight& temp);
void operator+=(Weight& temp);
//void operator/=(int &temp);
void operator/=(int temp);
void operator<<(Weight& temp);
void friend WD(Weight* WGS, int H, int W, int len);
void friend WD(Weight* WGS, int H, int W, int len, float(*def)());
};
float zeros();
float ones();
float*** Pool(float*** y, Vector2& inp, int P, Vector2& out);//池化
float*** Conv(float** X, Vector2& inp, Vector2& out, Weight* W, int W_len);//卷积
void print(float* y, int y_len = 1);
void print(float* y, Vector2& vec);
void print(float** y, Vector2& vec);
void print(char* y, int y_len = 1);
void print(char** y, Vector2& vec);
void print(Weight& w);
void print(Weight* w, int len = 1);
float** apply2(int H/*高度*/, int W/*宽度*/);
float*** apply3(int P, int H/*高度*/, int W/*宽度*/);
char** apply2_char(int H/*高度*/, int W/*宽度*/);
float* apply1(int H);
char* apply1_char(int H);
float Get_rand();
float Sigmoid(float x);
float* Sigmoid(float* x, Weight& w);
float* Sigmoid(float* x, int height);
float ReLU(float x);
float* ReLU(float* x, Weight& w);
float* ReLU(float* x, int height);
float* Softmax(float* x, Weight& w);
float dsigmoid(float x);
float* Softmax(float* x, int height);
float* FXCB_err(Weight& w, float* delta);
float* Delta1(float* y, float* e, Weight& w);
float* Delta2(float* v, float* e, Weight& w);
float* dot(Weight& W/*权重*/, float* inp/*输入数据*/, int* len = NULL);
char* randperm(int max, int count);
void Dropout(float* y, float ratio, Weight& w);
float** conv2(float** x, Vector2& x_len, float** fiter, Vector2& fiter_len,
Vector2* out_len = NULL, int flag = Valid, int distance = 1, int fill = 0);
float** VALID(float** x, int x_h, int x_w, float** fiter, int fiter_h,
int fiter_w, int distance, Vector2* out_len = NULL);
float** SAME(float** x, int x_h, int x_w, float** fiter, int fiter_h,
int fiter_w, int distance, int fill, Vector2* out_len = NULL);
int VALID_out_len(int x_len, int fiter_len, int distance);
void show_Weight(Weight& W);
void rot90(Weight& x);
float** rot90(float** x, Vector2& x_len, bool release = false);
float** rot180(float** x, Vector2& x_len, bool release = false);
float** Get_data_by_Mat(char* filepath, Vector2& out_len);
char** Get_data_by_Mat_char(char* filepath, Vector2& out_len, int threshold = 127);
void Get_data_by_Mat(char* filepath, Weight& w);
Weight Get_data_by_Mat(char* filepath);
float* reshape(float** x, int h, int w);
float* reshape(float** x, Vector2& x_len);
float* reshape(float*** x, Vector2& x_len, int P, bool releace = false);
namespace mnist
{
char** Toshape2(char* x, int h, int w);
char** Toshape2(char* x, Vector2& x_len);
void Toshape2(char** out, char* x, int h, int w);
void Toshape2(char** out, char* x, Vector2& x_len);
float** Toshape2_F(char* x, int h, int w);
float** Toshape2_F(char* x, Vector2& x_len);
void Toshape2(float** out, char* x, int h, int w);
void Toshape2(float** out, char* x, Vector2& x_len);
void Toshape2(float** out, unsigned char* x, int h, int w);
void Toshape2(float** out, unsigned char* x, Vector2& x_len);
float*** Toshape3(float* x, int P, Vector2& x_len);
int ReverseInt(int i);
}
struct XML
{
char* name;
FILE* fp;
int layer;
XML(FILE* fp, char* name, int layer);
void showchild();
};
template<class T>
class hot_one
{
bool fz;
public:
T* one;
int num;
int count;
hot_one() { this->fz = false; }
hot_one(int type_num, int set_num = 0)
{
type_num = type_num <= 0 ? 1 : type_num;
if (set_num >= type_num)
set_num = 0;
this->count = type_num;
this->fz = true;
this->num = set_num;
this->one = new T[type_num]{ 0 };
this->one[set_num] = 1;
}
void re(int set_num)
{
this->one[num] = 0;
this->num = set_num;
this->one[this->num] = 1;
}
void release()
{
if (this->fz)delete one;
this->fz = false;
}
~hot_one()
{
this->release();
}
};
int* bList(int distance, int max, int* out_len);
void Free2(float** x, int h);
void Free3(float*** x, int p, int h);
void kron(float** out, Vector2& out_len, float** inp, Vector2& inp_len, float** filter,
Vector2& filter_len);
文章来源:https://www.toymoban.com/news/detail-674366.html
到了这里,关于C++卷积神经网络的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!