无涯教程-分类算法 - 逻辑回归

这篇具有很好参考价值的文章主要介绍了无涯教程-分类算法 - 逻辑回归。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

逻辑回归是一种监督学习分类算法,用于预测目标变量的概率,目标或因变量的性质是二分法,这意味着将只有两种可能的类。

简而言之,因变量本质上是二进制的,其数据编码为1(代表成功/是)或0(代表失败/否)。

在数学上,逻辑回归模型预测P(Y=1)作为X的函数。它是最简单的ML算法之一,可用于各种分类问题,例如垃圾邮件检测,糖尿病预测,癌症检测等。

逻辑回归类型

通常,逻辑回归是指具有二进制目标变量的二进制逻辑回归,但是可以通过它预测两类以上的目标变量,基于这些类别,Logistic逻辑回归可以分为以下几种类型:

二进制或二项式

在这种类型的分类中,因变量将只有1和0这两种可能的类型,例如,这些变量可以表示成功或失败,是或否,赢或输等。

多项式

在这种分类中,因变量可以具有3种或更多可能的 无序 类型或无定量意义的类型。例如,这些变量可以表示"类型A"或"类型B"或"类型C"。

序数词

在这种分类中,因变量可以具有3种或更多可能的 有序 类型或具有定量意义的类型。例如,这些变量可以表示"差"或"好","非常好","优秀",并且每个类别的分数都可以为0、1、2、3。

逻辑回归假设

在深入研究逻辑回归的实现之前,无涯教程必须了解以下关于相同的假设-

  • 对于二进制逻辑回归,目标变量必须始终为二进制,并且期望输出由因子级别1表示。

  • 模型中不应存在任何多重共线性,这意味着自变量必须彼此独立。

  • 必须在模型中包括有意义的变量。

  • 应该选择较大的样本量进行逻辑回归。

逻辑回归模型

  • Binary Logistic 模型            - Logistic逻辑回归的最简单形式是二进制或二项式Logistic回归,其中目标或因变量只能具有2种可能的类型,即1或0。

  • Multinomial Logistic 模型 - Logistic逻辑回归的另一种有用形式是多项式Lo​​gistic回归,其中目标或因变量可以具有3种或更多种可能的无序类型,即没有定量意义的类型。

分类算法 - 逻辑回归 - 无涯教程网无涯教程网提供逻辑回归是一种监督学习分类算法,用于预测目标变量的概率,目标或因变量的性质是二分...https://www.learnfk.com/python-machine-learning/machine-learning-with-python-classification-algorithms-logistic-regression.html文章来源地址https://www.toymoban.com/news/detail-674478.html

到了这里,关于无涯教程-分类算法 - 逻辑回归的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 无涯教程-分类算法 - 简介

    分类可以定义为根据观测值或给定数据点预测类别的过程。分类的输出可以采用\\\"黑色\\\"或\\\"白色\\\"或\\\"垃圾邮件\\\"或\\\"非垃圾邮件\\\"的形式。 在数学上,分类是从输入变量(X)到输出变量(Y)近似映射函数(f)的任务,它属于有监督的机器学习,在该机器学习中,还提供了目标以及输入数据

    2024年02月11日
    浏览(28)
  • 无涯教程-分类算法 - 随机森林

    随机森林是一种监督学习算法,可用于分类和回归,但是,它主要用于分类问题,众所周知,森林由树木组成,更多树木意味着更坚固的森林。同样,随机森林算法在数据样本上创建决策树,然后从每个样本中获取预测,最后通过投票选择最佳解决方案。它是一种集成方法,

    2024年02月11日
    浏览(48)
  • 无涯教程-分类算法 - 朴素贝叶斯

    朴素贝叶斯算法是一种基于应用贝叶斯定理的分类技术,其中强烈假设所有预测变量彼​​此独立。简而言之,假设是某个类中某个要素的存在独立于同一类中其他任何要素的存在。 在贝叶斯分类中,主要的兴趣是找到后验概率,即给定某些观察到的特征的标签的概率。借助

    2024年02月11日
    浏览(55)
  • 【AI底层逻辑】——篇章5(上):机器学习算法之回归&分类

    目录 引入 一、何为机器学习 1、定规则和学规则 2、算法的定义

    2024年02月16日
    浏览(51)
  • 无涯教程-分类算法 - Python实现函数

    为了在Python中实现SVM,无涯教程将从标准库导入开始,如下所示- 接下来,从sklearn.dataset.sample_generator创建具有线性可分离数据的样本数据集,以使用SVM进行分类- 以下是生成具有100个样本和2个聚类的样本数据集后的输出- 知道SVM支持判别分类。它通过在二维的情况下简单地找

    2024年02月10日
    浏览(31)
  • 【Sklearn】基于逻辑回归算法的数据分类预测(Excel可直接替换数据)

    逻辑回归是一种用于二分类问题的统计学习方法,尽管名字中含有“回归”,但实际上是一种分类算法。它的基本原理是通过建立一个线性模型,然后将线性输出映射到一个概率值,最终将这个概率值转换成二分类的预测结果。 下面是逻辑回归的基本原理: 线性模型: 首先

    2024年02月13日
    浏览(35)
  • python机器学习——分类模型评估 & 分类算法(k近邻,朴素贝叶斯,决策树,随机森林,逻辑回归,svm)

    交叉验证:为了让被评估的模型更加准确可信 交叉验证:将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。 通常情

    2024年02月03日
    浏览(65)
  • 逻辑回归(解决分类问题)

    定义: 逻辑回归是一种用于解决分类问题的统计学习方法。它通过对数据进行建模,预测一个事件发生的概率。逻辑回归通常用于 二元分类问题 ,即将数据分为两个类别。它 基于线性回归 模型,但使用了逻辑函数(也称为S形函数)来将输出限制在0到1之间,表示事件发生

    2024年01月15日
    浏览(32)
  • 【机器学习】逻辑回归(二元分类)

    离散感知器:输出的预测值仅为 0 或 1 连续感知器(逻辑分类器):输出的预测值可以是 0 到 1 的任何数字,标签为 0 的点输出接近于 0 的数,标签为 1 的点输出接近于 1 的数 逻辑回归算法(logistics regression algorithm):用于训练逻辑分类器的算法 sigmoid 函数: g ( z ) = 1 1 +

    2024年02月21日
    浏览(49)
  • 分类预测 | Python实现LR逻辑回归多输入分类预测

    基本介绍 逻辑回归是一种广义线性的分类模型且其模型结构可以视为单层的神经网络,由一层输入层、一层仅带有一个sigmoid激活函数的神经元的输出层组成,而无隐藏层。其模型的功能可以简化成两步,“通过模型权重[w]对输入特征[x]线性求和+sigmoid激活输出概率”。 模型

    2024年02月13日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包