数学建模-建模算法(4)

这篇具有很好参考价值的文章主要介绍了数学建模-建模算法(4)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

python虽然不是完全为数学建模而生的,但是它完整的库让它越来越适合建模了。

- 线性规划:使用scipy.optimize.linprog()函数
 

```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```



- 整数规划:使用scipy.optimize.linprog()函数,并将目标函数系数转换为整数
 

```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', integer=True)
print(res)
```



- 多元规划:使用scipy.optimize.linprog()函数
 

```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1, 1], [1, 2, 3]]
b = [6, 4, 5]
x0_bounds = (None, None, None)
x1_bounds = (-3, -3, -3)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```



- 二次规划:使用scipy.optimize.linprog()函数,并将目标函数系数转换为平方项
 

```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', square_root=True)
print(res)
```



- 遗传算法:使用DEAP库
 

```python
from deap import base, creator, tools, algorithms
import random

creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)

toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)
algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=40)
```



- 动态规划:使用scipy.optimize.linprog()函数,并将目标函数转换为动态规划问题
 

```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs')
print(res)
```



- 贪心算法:使用scipy.optimize.linprog()函数,并将目标函数转换为贪心策略
 

```python
from scipy.optimize import linprog

c = [-1, 4]
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bounds = (None, None)
x1_bounds = (-3, None)
res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', options={'disp': True})
while not res.success:
    if not res.fun:
        print("Objective function value is 0 at point %s" % res.x)
        break
    if res.status == 4:
        print("The algorithm could not find a feasible solution for the problem")
        break
    print(res)
    res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='highs', options={'disp': True})
print(res)
```

下次再更新一些高难度的常见算法。
 文章来源地址https://www.toymoban.com/news/detail-674503.html

到了这里,关于数学建模-建模算法(4)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数学建模】智能算法

    智能算法,也称现代优化算法 材料统计力学观点:材料中粒子的不同结构对应于粒子的不同能量水平 在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(这个过程被称为退火),粒子就可以在每个

    2024年01月24日
    浏览(40)
  • 清风数学建模——拟合算法

    概念 在前面的篇幅中提到可以使用插值算法,通过给定的样本点推算出一定的曲线从而推算出一些想要的值。但存在一些问题。一是若样本点过多,那么多项式的次数过高会造成龙格现象;二是为了避免龙格现象而通过分段的思想求得拟合曲线,但这样会导致曲线函数非常复

    2024年02月12日
    浏览(38)
  • 数学建模 插值算法

    有问题 牛顿差值也有问题 它们都有龙格现象,一般用分段插值。 插值预测要比灰色关联预测更加准确,灰色预测只有2次 拟合样本点要非常多,样本点少差值合适

    2024年02月16日
    浏览(36)
  • 数学建模——插值算法

    概念:数模比赛中,常常需要根据有已知的函数点进行数、模型处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“模拟产生“一些新的但又比较靠谱的值来满足需求,这就是插值的作用。 一维插值问题: 通过已有的点

    2024年02月16日
    浏览(37)
  • 数学建模之插值算法

    注:本文面向应用,参考了清风大大的资料以及司守奎老师的《数学建模算法与应用》,属作者的个人学习总结。 当已知函数点非常少的时候,我们经常要 模拟产生一些新的函数值 来支撑后续数据分析。这就是插值算法的应用目的。*插值算法还可以用来实现短期预测,但我

    2024年01月24日
    浏览(44)
  • 【数学建模】——拟合算法

    拟合算法定义:与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线),使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化损失函数)。 插值和拟合的区别: 例子: 此例子中如果用插值算法,因

    2024年02月16日
    浏览(35)
  • 数学建模:拟合算法

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 根据1到12点间的温度数据求出温度与时间之间的近似函数关系 F ( t ) F(t) F ( t ) ,由 F ( t ) F(t) F ( t ) 推断 t =13.5 时的温度。这种根据离散数据求数据间近似函数关系的问题称为 曲线拟合问题 。 拟合问题与插值问题的区别在于

    2024年02月10日
    浏览(34)
  • 数学建模部分算法

    Q1:模拟退火是什么算法? 模拟退火是模拟物理上退火方法,通过N次迭代(退火),逼近函数的上的一个 最值 (最大或者最小值)。 比如逼近这个函数的最大值C点: Q2:模拟退火为什么可行? 讨论这个问题需要理解一下物理原型是怎么样的,也就是原来是怎么“退火”的:

    2024年02月08日
    浏览(31)
  • 数学建模十大经典算法和常用算法

    1、蒙特卡罗算法: 该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。 2、数据拟合、参数估计、插值等数据处理算法: 比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于算法,通常使用Matlab作为

    2024年02月07日
    浏览(43)
  • 数学建模:多目标优化算法

    🔆 文章首发于我的个人博客:欢迎大佬们来逛逛 算法流程: 两个目标权重求和,化为单目标函数,然后求解最优值 min ⁡ x ∑ i = 1 m w i F i ( x )  s.t.  g ( x ) ⩽ 0 h ( x ) = 0 begin{array}{ll}min _{x} sum_{i=1}^{m} {w_{i} F_{i}(x)} \\\\\\\\text { s.t. } g(x) leqslant 0 \\\\\\\\ h(x)=0end{array} min x ​  s.t. 

    2024年02月08日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包