深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN

这篇具有很好参考价值的文章主要介绍了深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

生成对抗网络 – GAN 是最近2年很热门的一种无监督算法,他能生成出非常逼真的照片,图像甚至视频。我们手机里的照片处理软件中就会使用到它。

目录

生成对抗网络 GAN 的基本原理

大白话版本

非大白话版本

第一阶段:固定「判别器D」,训练「生成器G」

第二阶段:固定「生成器G」,训练「判别器D」

循环阶段一和阶段二

GAN的优缺点

10大典型的GAN算法

GAN 的13种实际应用


人工提取特征——自动提取特征

深度学习最特别最厉害的地方就是能够自己学习特征提取。

机器的超强算力可以解决很多人工无法解决的问题。自动化后,学习能力更强,适应性也更强。

人工判断生成结果的好坏——自动判断和优化

训练集需要大量的人工标注数据,这个过程是成本很高且效率很低的。而人工判断生成结果的好坏也是如此,有成本高和效率低的问题。

而 GAN 能自动完成这个过程,且不断的优化,这是一种效率非常高,且成本很低的方式。GAN是如何实现自动化的呢?下面我们讲解一下他的原理。

生成对抗网络 GAN 的基本原理

大白话版本

知乎上有一个很不错的解释,大家应该都能理解:

假设一个城市治安混乱,很快,这个城市里就会出现无数的小偷。在这些小偷中,有的可能是盗窃高手,有的可能毫无技术可言。假如这个城市开始整饬其治安,突然开展一场打击犯罪的「运动」,警察们开始恢复城市中的巡逻,很快,一批「学艺不精」的小偷就被捉住了。之所以捉住的是那些没有技术含量的小偷,是因为警察们的技术也不行了,在捉住一批低端小偷后,城市的治安水平变得怎样倒还不好说,但很明显,城市里小偷们的平均水平已经大大提高了。

警察们开始继续训练自己的破案技术,开始抓住那些越来越狡猾的小偷。随着这些职业惯犯们的落网,警察们也练就了特别的本事,他们能很快能从一群人中发现可疑人员,于是上前盘查,并最终逮捕嫌犯;小偷们的日子也不好过了,因为警察们的水平大大提高,如果还想以前那样表现得鬼鬼祟祟,那么很快就会被警察捉住。

非大白话版本

生成对抗网络(GAN)由2个重要的部分构成:

  1. 生成器(Generator):通过机器生成数据(大部分情况下是图像),目的是“骗过”判别器
  2. 判别器(Discriminator):判断这张图像是真实的还是机器生成的,目的是找出生成器做的“假数据”

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

下面详细介绍一下过程:

第一阶段:固定「判别器D」,训练「生成器G」

我们使用一个还 OK 判别器,让一个「生成器G」不断生成“假数据”,然后给这个「判别器D」去判断。

一开始,「生成器G」还很弱,所以很容易被揪出来。

但是随着不断的训练,「生成器G」技能不断提升,最终骗过了「判别器D」。

到了这个时候,「判别器D」基本属于瞎猜的状态,判断是否为假数据的概率为50%。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

第二阶段:固定「生成器G」,训练「判别器D」

当通过了第一阶段,继续训练「生成器G」就没有意义了。这个时候我们固定「生成器G」,然后开始训练「判别器D」。

「判别器D」通过不断训练,提高了自己的鉴别能力,最终他可以准确的判断出所有的假图片。

到了这个时候,「生成器G」已经无法骗过「判别器D」。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

循环阶段一和阶段二

通过不断的循环,「生成器G」和「判别器D」的能力都越来越强。

最终我们得到了一个效果非常好的「生成器G」,我们就可以用它来生成我们想要的图片了。

下面的实际应用部分会展示很多“惊艳”的案例。深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

如果对 GAN 的详细技术原理感兴趣,可以看看下面2篇文章:

《生成性对抗网络(GAN)初学者指南 – 附代码》

《长文解释生成对抗网络GAN的详细原理(20分钟阅读)》

GAN的优缺点

3个优势

  1. 能更好建模数据分布(图像更锐利、清晰)
  2. 理论上,GANs 能训练任何一种生成器网络。其他的框架需要生成器网络有一些特定的函数形式,比如输出层是高斯的。
  3. 无需利用马尔科夫链反复采样,无需在学习过程中进行推断,没有复杂的变分下界,避开近似计算棘手的概率的难题。

2个缺陷

  1. 难训练,不稳定。生成器和判别器之间需要很好的同步,但是在实际训练中很容易D收敛,G发散。D/G 的训练需要精心的设计。
  2. 模式缺失(Mode Collapse)问题。GANs的学习过程可能出现模式缺失,生成器开始退化,总是生成同样的样本点,无法继续学习。

10大典型的GAN算法

GAN 算法有数百种之多,大家对于 GAN 的研究呈指数级的上涨,目前每个月都有数百篇论坛是关于对抗网络的。

下图是每个月关于 GAN 的论文发表数量:

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

如果你对 GANs 算法感兴趣,可以在 「GANs动物园」里查看几乎所有的算法。我们为大家从众多算法中挑选了10个比较有代表性的算法,技术人员可以看看他的论文和代码。

算法 论文 代码
GAN 论文地址 代码地址
DCGAN 论文地址 代码地址
CGAN 论文地址 代码地址
CycleGAN 论文地址 代码地址
CoGAN 论文地址 代码地址
ProGAN 论文地址 代码地址
WGAN 论文地址 代码地址
SAGAN 论文地址 代码地址
BigGAN 论文地址 代码地址

上面内容整理自《Generative Adversarial Networks – The Story So Far》原文中对算法有一些粗略的说明,感兴趣的可以看看。

GAN 的13种实际应用

GAN 看上去不如「语音识别」「文本挖掘」那么直观。不过他的应用已经进入到我们的生活中了。下面给大家列举一些 GAN 的实际应用。

生成图像数据集

人工智能的训练是需要大量的数据集的,如果全部靠人工收集和标注,成本是很高的。GAN 可以自动的生成一些数据集,提供低成本的训练数据。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

生成人脸照片

生成人脸照片是大家很熟悉的应用,但是生成出来的照片用来做什么是需要思考的问题。因为这种人脸照片还处于法律的边缘。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

生成照片、漫画人物

GAN 不但能生成人脸,还能生成其他类型的照片,甚至是漫画人物。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

图像到图像的转换

简单说就是把一种形式的图像转换成另外一种形式的图像,就好像加滤镜一样神奇。例如:

  • 把草稿转换成照片
  • 把卫星照片转换为Google地图的图片
  • 把照片转换成油画
  • 把白天转换成黑夜

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

文字到图像的转换

特别是他们的 StackGAN,从鸟类和花卉等简单对象的文本描述中生成逼真的照片。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

语意 – 图像 – 照片 的转换

在2017年标题为“ 高分辨率图像合成和带条件GAN的语义操纵 ”的论文中,演示了在语义图像或草图作为输入的情况下使用条件GAN生成逼真图像。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

自动生成模特

在2017年标题为“ 姿势引导人形象生成 ”的论文中,可以自动生成人体模特,并且使用新的姿势。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

照片到Emojis

GANs 可以通过人脸照片自动生成对应的表情(Emojis)。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

照片编辑

使用GAN可以生成特定的照片,例如更换头发颜色、更改面部表情、甚至是改变性别。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

预测不同年龄的长相

给一张人脸照片, GAN 就可以帮你预测不同年龄阶段你会长成什么样。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

提高照片分辨率,让照片更清晰

给GAN一张照片,他就能生成一张分辨率更高的照片,使得这个照片更加清晰。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

照片修复

假如照片中有一个区域出现了问题(例如被涂上颜色或者被抹去),GAN可以修复这个区域,还原成原始的状态。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

自动生成3D模型

给出多个不同角度的2D图像,就可以生成一个3D模型。

深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN,2023 AI,深度学习,生成对抗网络,人工智能

生成式对抗网络(GAN, Generative Adversarial Networks )

是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型的自由性而导致输出不理想。

生成对抗网络(GAN)是一类用于无监督机器学习的人工智能算法,由在零和游戏框架中相互竞争的两个神经网络系统实现。他们是由Ian Goodfellow 等人介绍的。在2014年这种技术可以生成照片看起来至少在表面上真实的人的观察员,有很多的现实特征(虽然在测试中的人可以真正告诉在许多情况下产生)。文章来源地址https://www.toymoban.com/news/detail-674871.html

到了这里,关于深度学习7:生成对抗网络 – Generative Adversarial Networks | GAN的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • GAN(Generative Adversarial Nets (生成对抗网络))

    一、GAN 1、应用 GAN的应用十分广泛,如图像生成、图像转换、风格迁移、图像修复等等。 2、简介 生成式对抗网络是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model,G)和判别模型(Discriminative Model,D)的互相

    2024年02月04日
    浏览(37)
  • 李宏毅 Generative Adversarial Network(GAN)生成对抗网络

    附课程提到的各式各样的GAN:https://github.com/hindupuravinash/the-gan-zoo 想要让机器做到的是生成东西。-训练出来一个generator。 假设要做图像生成,要做的是随便给一个输入(random sample一个vector,比如从gaussian distribution sample一个vector),generator产生一个image。丢不同的vector,就应

    2024年01月21日
    浏览(55)
  • AIGC实战——条件生成对抗网络(Conditional Generative Adversarial Net, CGAN)

    我们已经学习了如何构建生成对抗网络 (Generative Adversarial Net, GAN) 以从给定的训练集中生成逼真图像。但是,我们无法控制想要生成的图像类型,例如控制模型生成男性或女性的面部图像;我们可以从潜空间中随机采样一个点,但是不能预知给定潜变量能够生成什么样的图像

    2024年02月04日
    浏览(49)
  • GAN(Generative Adversarial Network)作为深度学习领域中的一种生成模型,近年来在图像、音频等多种模态数据上取得了良好的效果。其核心思想就是通过博弈论中的对抗训练方式

    作者:禅与计算机程序设计艺术 GAN(Generative Adversarial Network)作为深度学习领域中的一种生成模型,近年来在图像、音频等多种模态数据上取得了良好的效果。其核心思想就是通过博弈论中的对抗训练方式,让两个网络(一个生成网络G和一个判别网络D)互相竞争,不断提升

    2024年02月07日
    浏览(48)
  • python- 用GAN(Generative Adversarial Networks)实现,用于生成手写数字图片。

    用GAN(Generative Adversarial Networks)实现,用于生成手写数字图片。 导入 PyTorch 和相关的库,包括: torch : PyTorch 库。 torch.nn : PyTorch 中的神经网络模块。 torch.optim : PyTorch 中的优化器。 torch.nn.functional : PyTorch 中的函数式接口。 torch.utils.data : PyTorch 中的数据加载器。 torchvision :

    2024年02月03日
    浏览(53)
  • 【水下图像增强】Enhancing Underwater Imagery using Generative Adversarial Networks

    原始题目 Enhancing Underwater Imagery using Generative Adversarial Networks 中文名称 使用 GAN 增强水下图像 发表时间 2018年1月11日 平台 ICRA 2018 来源 University of Minnesota, Minneapolis MN 文章链接 https://arxiv.org/abs/1801.04011 开源代码 官方:https://github.com/IRVLab/UGAN (tensorflow ) 自动水下航行器(Auto

    2024年02月03日
    浏览(45)
  • 深度学习生成对抗网络(GAN)

    生成对抗网络(Generative Adversarial Networks)是一种无监督深度学习模型,用来通过计算机生成数据,由Ian J. Goodfellow等人于2014年提出。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。生成对抗网络被认为是当

    2024年02月07日
    浏览(60)
  • 深度学习8:详解生成对抗网络原理

    目录 大纲 生成随机变量 可以伪随机生成均匀随机变量 随机变量表示为操作或过程的结果 逆变换方法 生成模型 我们试图生成非常复杂的随机变量…… …所以让我们使用神经网络的变换方法作为函数! 生成匹配网络 培养生成模型 比较基于样本的两个概率分布 反向传播分布

    2024年02月11日
    浏览(45)
  • 深度学习基础——GAN生成对抗网络

            生成对抗网络GAN(Generative adversarial networks)是Goodfellow等在2014年提出的一种生成式模型。GAN在结构上受博弈论中的二元零和博弈(即二元的利益之和为零,一方的所得正是另一方的所失)的启发,系统由一个生成器和一个判别器构成。         生成器和判别器均可以

    2024年02月22日
    浏览(66)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包