论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

这篇具有很好参考价值的文章主要介绍了论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

  • 要弄清MAML怎么做,为什么这么做,就要看懂这两张图。
  • 先说MAML**在做什么?**它是打着Mate-Learing的旗号干的是few-shot multi-task Learning的事情。具体而言就是想训练一个模型能够使用很少的新样本,快速适应新的任务。

定义问题

  • 我们定义一个模型 f f f, 输入 x x x输出 a a a
    -定义每一个Task - T T T包含一个损失函数 L L L, 一个原始观察 q ( x 1 ) q(x_1) q(x1), 一个状态转移分布 q ( x 1 ∣ x t , a t ) q(x_1 | x_t,a_t) q(x1xt,at)以及集长度 H H H。在监督任务中H=1(也就是说当前的a只和当前的x有关)。
    论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,论文阅读

元学习方法介绍

  • 元学习,被称为“Learn to Learn”的方法。元学习希望获取一个网络(结构+参数),满足一定的预设要求。
  • 在我们的元学习场景中,我们考虑了一个跨任务的分布 p ( T ) p(T) p(T),我们希望我们的模型能够适应这个分布。在 K -shot学习的设置中,模型被训练来学习一个新的任务 T i T_i Ti,这个任务是从 p ( T ) p(T) p(T) 中抽取的,只使用了从 q i q_i qi 抽取的 K 个样本,并且由 T i T_i Ti 生成的反馈 L T i L_{T_i} LTi在元训练期间,从 p ( T ) p(T) p(T) 中抽取一个任务 T i T_i Ti,模型会用从 T i T_i Ti 中抽取的 K 个样本和相应的损失 L T i L_{T_i} LTi的反馈进行训练,然后在来自 T i T_i Ti 的新样本上进行测试。然后,通过考虑模型在新数据上的测试误差更新参数,来改进模型 f f f。实际上,对抽样的任务 T i T_i Ti 进行的测试误差充当了元学习过程的训练错误。在元训练结束时,从 p ( T ) p(T) p(T) 中抽取新任务,并通过模型从 K 个样本中学习后的表现来衡量元能力。通常,在元训练期间保留用于元测试的任务。

A Model-Agnostic Meta-Learning Algorithm

  • 给定一个初始的神经网络结构及参数,使用针对同一领域的多个任务集作为样本,对每个任务集分配这样一个网络,不同的任务集对各自的网络做一次loss计算和梯度更新,然后对所有更新之后的神经网络再计算一次loss,将这些loss综合考虑起来作为一个新的loss,来更新那个最开始的神经网络,再将获得到的网络作为新的初始神经网络,迭代这个过程。—引用自

  • 这种方法背后的直觉是,一些内部表示比其他表示更可转移。The intuition behind this approach is that some internal representations are more transferrable than others.

  • 实际上,我们的目标是找到对任务变化最敏感的模型参数,这样当改变梯度的方向,损失的小改变参数将产生大改进,如下图。
    论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,论文阅读

  • 我们定义一个模型表示为 f θ f_{\theta} fθ。当适应新的任务 T i T_i Ti时,模型参数从 θ \theta θ变为 θ i ′ \theta'_i θi.在我们的方法中,我们更新参数使用一个或多个任务T T i T_i Ti梯度向量.

  • 当使用一个梯度进行更新:
    论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,论文阅读

  • 而元-目标是:
    论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,论文阅读
    -整个算法如下:
    论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,论文阅读文章来源地址https://www.toymoban.com/news/detail-674889.html

到了这里,关于论文阅读:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【论文阅读笔记】Detecting AI Trojans Using Meta Neural Analysis

    个人阅读笔记,如有错误欢迎指出! 会议:2021 SP        Detecting AI Trojans Using Meta Neural Analysis | IEEE Conference Publication | IEEE Xplore 问题:         当前防御方法存在一些难以实现的假设,或者要求直接访问训练模型,难以在实践中应用。 创新:         通过元分类器

    2024年01月23日
    浏览(47)
  • 【论文阅读】 Model Sparsity Can Simplify Machine Unlearning

    Machine Unlearning(MU)是指出于对数据隐私保护的目的以及对\\\"RTBF\\\"(right to be forgotten)等数据保护方案的响应,而提出的一种数据遗忘的方法。在现实中,用户有权请求数据收集者删除其个人数据,但是仅将用户数据从数据集中删除是不够的。 原因:对model的攻击,比如成员推

    2024年02月12日
    浏览(42)
  • ChatGLM基座:GLM(General Language Model)论文阅读笔记

    现在有很多Pretrain model 的架构, 如Bert、GPT、T5等,但是当时没有一种模型能在NLU、有条件文本生成、无条件文本生成都有很好的表现。 一般预训练模型架构分为三种:自回归(GPT系列)、自编码(Bert系列)、编码器-解码器(T5)。 作者概述了它们目前存在的问题·: GPT:单

    2024年02月02日
    浏览(44)
  • 论文阅读 - Learning Human Interactions with the Influence Model

    NIPS\\\'01 早期模型 要求知识背景: 似然函数,极大似然估计、HMM、期望最大化 目录 1 Introduction 2 The Facilitator Room 3 T h e I n f l u e n c e M o d e l 3 . 1 ( R e ) i n t r o d u c i n g t h e I n f l u e n c e M o d e l 3 . 2 L e a r n i n g f o r t h e I n f l u e n c e M o d e l 3. 2. 1 期望——影响力最大化模型 3

    2024年02月07日
    浏览(50)
  • 论文阅读:TinySAM: Pushing the Envelope for Efficient Segment Anything Model-文章内容阅读

    论文标题: TinySAM: 极致高效的分割一切模型 论文地址:https://arxiv.org/pdf/2312.13789.pdf 代码地址(pytorch):https://github.com/xinghaochen/TinySAM 详细论文解读:TinySAM:极致高效压缩,手机就能实时跑的分割一切模型 - 知乎 (zhihu.com)  目录 文章内容解析  概括 文章的观点 技术创新解

    2024年01月17日
    浏览(54)
  • 论文阅读《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》

    就上一篇博客如何写论文、读(分享汇报)论文,在《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》进行实践。 《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》是一篇由Mingxing Tan和Quoc V. Le等人于2019年提出的论文,主要关注卷积神经网络(CNN)的模型缩

    2024年02月03日
    浏览(49)
  • Feature Prediction Diffusion Model for Video Anomaly Detection 论文阅读

    文章标题:Feature Prediction Diffusion Model for Video Anomaly Detection 文章信息: 发表于:ICCV 2023 原文链接:https://openaccess.thecvf.com/content/ICCV2023/papers/Yan_Feature_Prediction_Diffusion_Model_for_Video_Anomaly_Detection_ICCV_2023_paper.pdf 源代码:https://github.com/daidaidouer/FPDM 在视频异常检测是一个重要的研

    2024年01月17日
    浏览(54)
  • 论文阅读--EFFICIENT OFFLINE POLICY OPTIMIZATION WITH A LEARNED MODEL

    作者:Zichen Liu, Siyi Li, Wee Sun Lee, Shuicheng YAN, Zhongwen Xu 论文链接:Efficient Offline Policy Optimization with a Learned Model | OpenReview 发表时间:  ICLR   2023年1月21日  代码链接:https://github.com/sail-sg/rosmo MuZero的离线版本算法(MuZero Unplugged)为基于日志数据的离线策略学习提供了一种很

    2024年02月03日
    浏览(53)
  • 论文阅读:Diffusion Model-Based Image Editing: A Survey

    论文链接 GitHub仓库 这篇文章是一篇基于扩散模型(Diffusion Model)的图片编辑(image editing)方法综述。作者从多个方面对当前的方法进行分类和分析,包括学习策略、用户输入、和适用的任务等。为了进一步评估文本引导的图片编辑算法,作者提出了一个新的基准,EditEval,

    2024年04月10日
    浏览(39)
  • 《Hierarchical Sequence Labeling Model for Aspect Sentiment Triplet Extraction》论文阅读

    文章地址: https://link.springer.com/chapter/10.1007/978-3-030-60450-9_52   在这篇文章中作者提出了一个继承性的序列标注模型( hierarchical sequence labeling model, HSLM)以端到端的方式识别文本语句中所含有的方面级情感三元组(ASTE)。该模型主要有三个部分组成:方面级序列标注模块、

    2024年01月16日
    浏览(106)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包