一键实现 Oracle 数据整库同步至 Apache Doris

这篇具有很好参考价值的文章主要介绍了一键实现 Oracle 数据整库同步至 Apache Doris。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在实时数据仓库建设或迁移的过程中,用户必须考虑如何高效便捷将关系数据库数据同步到实时数仓中来,Apache Doris 用户也面临这样的挑战。而对于从 Oracle 到 Doris 的数据同步,通常会用到以下两种常见的同步方式:

OGG/XStream/LogMiner 工具: 通过该方式先将数据同步到 Kafka 中,然后通过 Routine Load 消费 Kafka 中的数据进行实时同步。这种方式的同步链路相对较长,特别是在上游数据表较多的情况下,需要手动创建大量的 Routine Load 作业,同步流程不仅繁琐,也给用户增加了较大的使用及维护压力。

FlinkCDC: 该方式虽然可以直接将上游数据同步到 Doris 中,并在一定程度上缩短了同步链路,实际在使用过程中还会遇到以下问题:

  • 数据同步时,需要在 Flink 中对每张表手动配置参数及字段映射,尤其是在多表或整库同步场景中,不仅带来大量配置工作量,还增加了 FlinkSQL 脚本的维护成本。
  • 数据同步时,需要事先在 Doris 中手动逐个创建表,而面对数量庞大的上游表时,手动创建表不仅耗费时间,而且工作效率很低,间接影响数据同步的效率。
  • 由于每张 Source 表都会使用同一个链接,因此在整库同步时会给源端造成很大的链接压力。

为了解决上述问题,在新版本的 Doris-Flink-Connector  中,我们实现了 FlinkCDC 的 Datastream API 集成,无需提前在 Doris 中创建表以及映射关系,仅仅通过简单的参数配置就能一键完成从 Oracle 等关系型数据库到 Apache Doris 的整库数据同步。

此外,Doris-Flink-Connector 也可以一键实现万表 MySQL 整库同步至 Apache Doris 中来,具体使用可参考:一键实现万表 MySQL 整库同步至 Apache Doris

同步流程 & 实战演示


在进行整库同步前,我们先了解一下具体同步流程:

一键实现 Oracle 数据整库同步至 Apache Doris,oracle,apache,数据库,大数据,doris

  • 在启动 Flink 任务之前,Doris-Flink-Connector  会自动读取需要同步的 Oracle 表的元数据信息,并自动在 Doris 中创建相应的表。
  • 通过 FlinkCDC 提供的 OracleSource 功能,能够从 Oracle 数据库中读取数据,并将其传递到下游进行处理。
  • 通过 Flink 的侧输出流功能,根据自定义规则将数据分流到不同的 Doris Sink 中,并同步到 Doris 中来。

通过以上简单操作,即可实现上游 Oracle 数据库的整库数据实时数据接入到 Apache Doris 中。接下来我们通过一个实际案例来详细说明具体的操作步骤:

01  Oracle 环境准备

# 拉取镜像
docker pull registry.cn-hangzhou.aliyuncs.com/helowin/oracle_11g

# 启动镜像
docker run -it -d \
--privileged \
-p 1521:1521 \
--name oracle11g \
-e ORACLE_ALLOW_REMOTE=true \
-v /mnt/disk1/oracle:/data/oracle \
registry.cn-hangzhou.aliyuncs.com/helowin/oracle_11g

# 进入容器
docker exec -it oracle11g bash

Oracle 归档日志(Binlog)配置:启动归档日志时,需对日志大小和存放地址进行设置,设置完成需进行重启。该步骤完成后才可进行后续增量数据的同步。

# 进入SQL命令行
[oracle@ef6d9de18e59 ~]$ sqlplus /nolog
SQL> conn /as sysdba
Connected.

SQL> alter system set db_recovery_file_dest_size = 10G;
System altered.

SQL> alter system set db_recovery_file_dest = '/home/oracle/oracle-data' scope=spfile;
System altered.

SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.

SQL> startup mount;
ORACLE instance started.
Total System Global Area 1603411968 bytes
Fixed Size                  2213776 bytes
Variable Size             402655344 bytes
Database Buffers         1174405120 bytes
Redo Buffers               24137728 bytes
Database mounted.

SQL> alter database archivelog;
Database altered.

SQL> alter database open;
Database altered.
# 检查日志归档是否开启
SQL> archive log list;
Database log mode              Archive Mode
Automatic archival             Enabled
Archive destination            USE_DB_RECOVERY_FILE_DEST
Oldest online log sequence     1
Next log sequence to archive   1
Current log sequence           1

# 启用补充日志记录
SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;
Database altered.

#创建用户
CREATE USER admin IDENTIFIED BY admin123;
GRANT dba TO admin;

数据准备

[oracle@ef6d9de18e59 ~]$ sqlplus admin/admin123 
SQL> CREATE TABLE PERSONS(
      ID NUMBER(10),
      NAME VARCHAR2(128) NOT NULL,
      PRIMARY KEY(ID)
   );
Table created.

SQL> INSERT INTO "PERSONS" VALUES (1, 'zhangsan');
SQL> INSERT INTO "PERSONS" VALUES (2, 'lisi');
SQL> INSERT INTO "PERSONS" VALUES (3, 'wangwu');

SQL> CREATE TABLE PERSONS_1(
      ID NUMBER(10),
      NAME VARCHAR2(128) NOT NULL,
      PRIMARY KEY(ID)
   );
Table created.

SQL> INSERT INTO "PERSONS_1" VALUES (1, 'zhangsan');
SQL> INSERT INTO "PERSONS_1" VALUES (2, 'lisi');
SQL> INSERT INTO "PERSONS_1" VALUES (3, 'wangwu');

02  Flink 环境配置

将 FlinkCDC-Oracle 的依赖和 Doris-Flink-Connector 包放到 Flink 的 lib 目录下,同时启动 Flink 集群。

# 下载相关依赖
wget https://repo.maven.apache.org/maven2/com/ververica/flink-sql-connector-oracle-cdc/2.3.0/flink-sql-connector-oracle-cdc-2.3.0.jar
wget https://repository.apache.org/content/repositories/snapshots/org/apache/doris/flink-doris-connector-1.16/1.5.0-SNAPSHOT/flink-doris-connector-1.16-1.5.0-20230811.065053-1.jar -O flink-doris-connector-1.16-1.5.0-SNAPSHOT.jar

# 启动Flink集群
bin/start-cluster.sh

03  一键提交整库同步作业

本次同步以 PERSON 开头的所有的表。

<FLINK_HOME>/bin/flink run \
     -Dexecution.checkpointing.interval=10s \
     -Dparallelism.default=1 \
     -c org.apache.doris.flink.tools.cdc.CdcTools \
     ./lib/flink-doris-connector-1.16-1.5.0-SNAPSHOT.jar \
     oracle-sync-database \
     --database test_db \
     --oracle-conf hostname=127.0.0.1 \
     --oracle-conf port=1521 \
     --oracle-conf username=admin \
     --oracle-conf password=admin123 \
     --oracle-conf database-name=HELOWIN \
     --oracle-conf schema-name=ADMIN \
     --including-tables "PERSONS.*" \
     --sink-conf fenodes=127.0.0.1:8030 \
     --sink-conf username=root \
     --sink-conf password=\
     --sink-conf jdbc-url=jdbc:mysql://127.0.0.1:9030 \
     --sink-conf sink.label-prefix=label \
     --table-conf replication_num=1

详细参数可参考:https://doris.apache.org/zh-CN/docs/dev/ecosystem/flink-doris-connector

提交成功后,可以在 FlinkWeb 上看到该同步任务的状态。

一键实现 Oracle 数据整库同步至 Apache Doris,oracle,apache,数据库,大数据,doris

进入 Doris 可以查看自动创建的表以及同步成功的全量数据。

mysql> use test_db;                                                                                                                                        
Reading table information for completion of table and column names                                                                                         
You can turn off this feature to get a quicker startup with -A                                                                                             
                                                                                                                                                           
Database changed                                                                                                                                           
mysql> show tables;                                                                                                                                        
+-------------------+                                                                                                                                      
| Tables_in_test_db |                                                                                                                                      
+-------------------+                                                                                                                                      
| PERSONS           |                                                                                                                                      
| PERSONS_1         |                                                                                                                                      
+-------------------+                                                                                                                                      
2 rows in set (0.00 sec)                                                                                                                                   
                                                                                                                                                           
mysql> select * from PERSONS;                                                                                                                              
+------+----------+                                                                                                                                        
| ID   | NAME     |                                                                                                                                        
+------+----------+                                                                                                                                        
|    2 | lisi     |                                                                                                                                        
|    3 | wangwu   |                                                                                                                                        
|    1 | zhangsan |                                                                                                                                        
+------+----------+                                                                                                                                        
3 rows in set (0.01 sec)                                                                                                                                   
                                                                                                                                                           
mysql> select * from PERSONS_1;                                                                                                                            
+------+----------+                                                                                                                                        
| ID   | NAME     |                                                                                                                                        
+------+----------+                                                                                                                                        
|    2 | lisi     |                                                                                                                                        
|    3 | wangwu   |                                                                                                                                        
|    1 | zhangsan |                                                                                                                                        
+------+----------+                                                                                                                                        
3 rows in set (0.01 sec)

在 Oracle 中模拟实时增删改数据

INSERT INTO PERSONS VALUES(4,'doris');
UPDATE PERSONS SET name = 'zhangsan-update' WHERE ID =1;
DELETE PERSONS WHERE ID =2; 

在 Doris 中进行验证,可以确认增量数据已经成功同步。

mysql> select * from PERSONS;                                                                                                                              
+------+-----------------+                                                                                                                                 
| ID   | NAME            |                                                                                                                                 
+------+-----------------+                                                                                                                                 
|    1 | zhangsan-update |                                                                                                                                 
|    4 | doris           |                                                                                                                                 
|    3 | wangwu          |                                                                                                                                 
+------+-----------------+                                                                                                                                 
3 rows in set (0.01 sec)  

通过以上操作,成功实现将 Oracle 中数据整库同步到 Doris 中,同时也实现了上游全量与增量数据的自动接入。

实际使用反馈


原先将 Oracle 数据同步到 Doris 中时,需要手动创建 Source 和 Sink 表,而使用 Doris-Flink-Connector 后可以实现多表、整库数据一键同步,极大简化了开发流程,该工具还能实现字段类型自动转换,数据同步更加简单便捷。

—— 远景动力 资深大数据工程师 孙全隆

在使用 Doris-Flink-Connector 之前,我们一般是通过 DataX 定时从业务系统中抽取数据,当进行全量同步时,抽取数据会对业务系统造成一定的压力,且该方式只能做到小时级的同步。期间我们也尝试了 FlinkCDC,该方式虽然可以实现数据实时写入 Doris ,但每个表都需要手动创建新任务,配置工作量大且会浪费服务器资源。而 Doris-Flink-Connector 可以实现一键化脚本操作,为我们减少了繁杂的手工配置流程,高效稳定的实现了整库数据快速同步。

—— 郑煤机数耘科技 资深大数据工程师 杨开元

Doris-Flink-Connector  一键操作即可快速实现 Oracle 数据整库同步到 Doris,节省了手动配置以及编写复杂同步代码的步骤,避免了手动同步中可能出现数据不一致的问题。不仅能提高数据的准确性和可靠性,也极大提升了工作的效率。

—— 海程邦达 资深大数据工程师 王新

在实时数仓的建设过程中,对于 ODS 贴源数据层的同步需求,Doris-Flink-Connector  能够很好的解决全量数据、增量数据、增量表、表结构变更自动监听。同时它也对 Stream Load 逻辑进行了优化,可以避免频繁对空数据进行 Load,减轻了数据库压力。此外,Doris-Flink-Connector 能够帮助我们节省大量 Flink 集群资源,特别是业务变更频繁时期,能很好及时的同步上游状态,确保上下游数据的一致性。

——旺小宝 数据架构师 米华军

我们在 MySQL 和 Orcale 两个场景下均进行了全量 + 增量的尝试,Doris-Flink-Connector 是真正的拆箱即用,真正实现了一键式操作、无感知建表,这为开发人员节省了不少时间成本,同时在使用期间遇到问题,SelectDB 技术同学的响应速度非常给力,帮助我们快速推进数据同步工作。

—— 博思软件 资深大数据开发工程师 刘工

总结


Doris-Flink-Connector 通过集成 FlinkCDC,能够将上游 Oracle 数据库中的数据快速同步到 Doris 中。特别是在整库同步场景中,用户只需执行一键导入命令,即可快速将整个数据库的全量和增量数据导入到 Doris 中。这一功能的引入大大降低了数据同步的门槛,使数据同步变得更加简单高效。

最后,欢迎有需要的小伙伴使用该工具,感兴趣的伙伴可以在评论区留言或私信申请进入专项支持群,如果你在使用过程中遇到任何问题,均可向我们反馈~

# 作者介绍: 吴迪, SelectDB 生态研发工程师。文章来源地址https://www.toymoban.com/news/detail-674906.html

到了这里,关于一键实现 Oracle 数据整库同步至 Apache Doris的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink 内容分享(二十一):通过Flink CDC一键整库同步MongoDB到Paimon

    目录 导言 Paimon CDC Demo 说明 Demo 准备 Demo 开始 总结 MongoDB 是一个比较成熟的文档数据库,在业务场景中,通常需要采集 MongoDB 的数据到数据仓库或数据湖中,面向分析场景使用。 Flink MongoDB CDC 是 Flink CDC 社区提供的一个用于捕获变更数据(Change Data Capturing)的 Flink 连接器,

    2024年01月20日
    浏览(43)
  • Oracle数据库一键启停脚本

    说明:         1、数据库本地root用户一键启停oracle数据库         2、ssh连接一键启停远程oracle数据库(需要做免密登录) 一、oracle一键启停脚本-本地 二、oracle一键启停脚本-ssh远程

    2024年02月12日
    浏览(47)
  • 基于OGG实现Oracle实时同步MySQL

    📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜😜😜 中国DBA联盟(ACDU)成员,目前服务于工业互联网 擅长主流Oracle、MySQL、PG、高斯及Greenplum运维开发,备份恢复,安装迁移,性能优

    2024年02月04日
    浏览(29)
  • 实现一个Windows环境一键启停Oracle的bat脚本

      Oracle数据库有许多优点,其中一些最重要的包括: 可靠性和稳定性: Oracle数据库经过长期的发展和测试,被广泛认为是非常可靠和稳定的数据库管理系统。它在大型企业和关键业务环境中被广泛应用,能够处理高负载和大规模的数据。 高性能: Oracle数据库具有优化的查询

    2024年02月21日
    浏览(40)
  • Oracle到DM实时数据同步实施方案

    目录 1 项目概述 2 需求分析 3 实施操作 3.1 历史数据全量同步 3.2 增量数据实时同步 4 问题总结 4.1 字符型非空约束 4.2 字符型唯一索引尾部空格 将Oracle 11g RAC生产环境数据同步到DM8分析环境,Oracle数据库大小1.5T,日增归档100G,DM数据库为新建库。 初始同步表数70多张,其中

    2024年02月13日
    浏览(41)
  • windows平台goldgate同步oracle数据库

    一、环境 操作系统 Microsoft Windows Server 2003 R2 Enterprise Edition Service Pack 2 数据库版本: Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 GoldenGate: Oracle GoldenGate Capture for Oracle Version 11.1.1.1.2 注:在安装goldgate之前,需要先安装好Oracle数据库,并且需要安装Microsoft Visual C++ 2005 SP1 Redi

    2024年02月04日
    浏览(30)
  • Oracle通过函数调用dblink同步表数据方案(全量/增量)

    创建对应的包,以方便触发调用 触发同步任务: SELECT yjb.pkg_scene_job.F_SYNC_DRUG_STOCK() AS a FROM dual WHERE 1=0; 没有结果行时是不会触发的,以下方式可触发: SELECT yjb.pkg_scene_job.F_SYNC_DRUG_STOCK() AS a FROM dual; PS:一定是使用(调用)到 触发函数yjb.pkg_scene_job.F_SYNC_DRUG_STOCK(),才可完成触

    2024年02月16日
    浏览(47)
  • OGG实现Oracle19C到postgreSQL14的实时同步

    📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜😜😜 中国DBA联盟(ACDU)成员,目前服务于工业互联网 擅长主流Oracle、MySQL、PG、高斯及Greenplum运维开发,备份恢复,安装迁移,性能优

    2024年02月04日
    浏览(33)
  • 使用Sqoop命令从Oracle同步数据到Hive,修复数据乱码 %0A的问题

    一、创建一张Hive测试表 创建分区字段partition_date,指定分隔符“,” 二、编写Sqoop数据同步命令 我这里使用的是shell脚本的方式: 命令相关属性说明: --connect:连接Oracle数据库的URL,例如jdbc:oracle:thin:@219.216.110.120:1521:orcl。 --username:连接Oracle数据库的用户名,例如TEST1。

    2024年02月04日
    浏览(51)
  • Oracle快速将A库的数据库对象同步到B库(包括数据)

    1.在pl/sql中导出A的用户对象 2.导出表数据,直接导PDE文件 如果PDE不行的话就到选择第一个dmp 3.然后把用户B的对象重新创建一遍,数据导进去。 创建对象的时候table和sequence都要删掉重新创建,不然会报已存在。

    2024年02月16日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包