数据结构——二叉树(堆的实现)

这篇具有很好参考价值的文章主要介绍了数据结构——二叉树(堆的实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

 

树概念及结构

树的相关概念

树的表示 

二叉树的概念及结构  

堆的实现 

 结构体建立

初始化 

 添加元素

 打印堆

 删除堆首元素

 返回首元素

 判断是否为空

空间销毁 


刷题找工作的好网站——牛客网

牛客网 - 找工作神器|笔试题库|面试经验|实习招聘内推,求职就业一站解决_牛客网

​​​​​​​二叉树建堆,数据结构,数据结构,算法

 

树概念及结构

 树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根节点没有前驱结点
除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
因此,树是递归定义的。

二叉树建堆,数据结构,数据结构,算法

 注意:树形结构中,子树之间不能有交集,否则就不是树形结构

二叉树建堆,数据结构,数据结构,算法

树的相关概念

 二叉树建堆,数据结构,数据结构,算法

 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;

树的表示 

1.指针数组表示

二叉树建堆,数据结构,数据结构,算法

数组内存的时子节点的地址

 2.二级指针表示

二叉树建堆,数据结构,数据结构,算法

 3.最常用的表示方法——孩子兄弟表示法

typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};

二叉树建堆,数据结构,数据结构,算法

 树在实际中的应用

二叉树建堆,数据结构,数据结构,算法

二叉树的概念及结构  

 一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

二叉树建堆,数据结构,数据结构,算法

 1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

二叉树每层的节点数是2^(k-1),满二叉树节点总个数2^k-1,完全二叉树节点个数范围:[2^k-1,2^k-1],完全二叉树最后一层的个数由1到满

注意:对于任意的二叉树都是由以下几种情况复合而成的:
二叉树建堆,数据结构,数据结构,算法

 特殊的二叉树:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树
二叉树建堆,数据结构,数据结构,算法

二叉树建堆,数据结构,数据结构,算法

 动态开辟的空间在堆上,这个堆是进程地址空间内存区域划分

堆(heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:

  • 堆中某个结点的值总是不大于或不小于其父结点的值;

  • 堆总是一棵完全二叉树。

  • 若将和此次序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。二叉树建堆,数据结构,数据结构,算法

    二叉树建堆,数据结构,数据结构,算法

  • 二叉树建堆,数据结构,数据结构,算法不管奇数偶数parent都可以这样计算

     TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
  • 比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
    对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能
    数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
    1. 用数据集合中前K个元素来建堆
    前k个最大的元素,则建小堆
    前k个最小的元素,则建大堆
    2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元

堆的实现 

 结构体建立

typedef int HPDataTypedef;
typedef struct Heap
{
	HPDataTypedef* a;
	int size;//最后元素的下一个位置
	int capacity;//统计容量
}HP;

初始化 

void HeapInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->capacity = php->size = 0;
}

 添加元素

void Swap(HPDataTypedef* a, HPDataTypedef* b)
{
	HPDataTypedef tmp = *a;
	*a = *b;
	*b = tmp;
}

//根据大根堆或小根堆进行调整,这里以小根堆为例
void AdjusuUp(HPDataTypedef* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0) //如果子节点=0,此时已经调整完成了,因此条件是>0
	{
		if (a[child]< a[parent])
		{
			Swap(&a[child], &a[parent]); //如果父节点<子节点,进行交换
			child = parent;     //更新子节点位置
			parent = (child - 1) / 2; //更新父节点位置
		}
		else
			break;
	}
}


void HeapPush(HP* php, HPDataTypedef x)
{
	assert(php);
	if (php->capacity == php->size)
	{
		int newcapacity = php->capacity == 0 ? 4 : 2 * php->capacity;
		HPDataTypedef* tmp = (HPDataTypedef*)realloc(php->a,sizeof(HPDataTypedef) * newcapacity);
		if (tmp == NULL)
		{
			perror("malloc fail:");
			exit(-1);
		}
		php->a = tmp;
		php->capacity = newcapacity;
	}
	php->a[php->size] = x;
	php->size++;
	AdjusuUp(php->a, php->size - 1);
}

二叉树建堆,数据结构,数据结构,算法

 打印堆

void HeapPrint(HP* php)
{
	assert(php);
	int i = 0;
	for (i = 0; i < php->size; i++)
	{
		printf("%d ", php->a[i]);
	}
}

 删除堆首元素

二叉树建堆,数据结构,数据结构,算法

向下调整的前提:左子树和右子树必须同时是大堆或小堆 文章来源地址https://www.toymoban.com/news/detail-675404.html

void AdjusuDown(HPDataTypedef* a,int n, HPDataTypedef parent)
{
	HPDataTypedef minChild = parent * 2 + 1;
	while (minChild<n)
	{
		if (minChild+1<n&&a[minChild+1] < a[minChild])
		{
			minChild++;
		}
		if (a[minChild] > a[parent])
		{
			Swap(&a[parent], &a[minChild]);
			parent = minChild;
			minChild = parent * 2 + 1;
		}
		else
			break;
	}
}

void HeapPop(HP* php)
{
	Swap(&php->a[0], &php->a[php->size-1]);
	php->size--;
//删除之后要让堆保持大根堆或小根堆存储的形式,这里以小根堆为例 
	AdjusuDown(php->a,php->size, 0);
}

 返回首元素

HPDataTypedef Pop(HP* php)
{
	assert(php);
	assert(!HeapEmpt(php));
	return php->a[0];
}

 判断是否为空

bool HeapEmpt(HP* php)
{
	assert(php);
	
	return php->size == 0;
} //如果size==0就是空

空间销毁 

void Destory(HP* php)
{
	free(php->a); //释放掉开辟的空间
	php->capacity = php->size = 0; //让容量和个数都为0
	php->a = NULL;
} 

到了这里,关于数据结构——二叉树(堆的实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构——lesson7二叉树 堆的介绍与实现

    啦啦啦~这里是土土数据结构学习笔记🥳🥳 💥个人主页:大耳朵土土垚的博客 💥 所属专栏:数据结构学习笔记 💥对于数据结构顺序表链表有疑问的都可以在上面数据结构的专栏进行学习哦~ 欢迎大家🥳🥳点赞✨收藏💖评论哦~🌹🌹🌹 有问题可以写在评论区或者私信我

    2024年03月11日
    浏览(42)
  • 【数据结构】由完全二叉树引申出的堆的实现

    关于“堆”,百度百科上是这么说的: ——————————引自百度百科 由上面可知,我们可以将堆理解成一个数组,也可以理解成一个完全二叉树。 其实由于完全二叉树的特殊性,其本身就可以使用一个数组来存储。 在之前的二叉树的实现中,我们已经知道完全二叉树

    2024年02月08日
    浏览(43)
  • 【数据结构—二叉树的基础知识介绍和堆的实现(顺序表)】

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 1.树概念及结构 1.1树的概念 1.2 树的相关概念  1.3 树的表示 1.4 树在实际中的运用(表示文件系统的目录树结构) 2.二叉树概念及结构 2.1概念 2.2 特殊的二叉树: 2.3 二叉树的存储结构

    2024年02月03日
    浏览(44)
  • 数据结构入门(C语言版)二叉树的顺序结构及堆的概念及结构实现应用

    普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用 顺序结构的数组来存储 ,需要注意的是 这里的堆和操作系统虚拟进程地址空间中的堆是两回事 ,一个是 数据结构 ,一

    2023年04月19日
    浏览(53)
  • 【数据结构初阶】七、非线性表里的二叉树(堆的实现 -- C语言顺序结构)

    ========================================================================= 相关代码gitee自取 : C语言学习日记: 加油努力 (gitee.com)  ========================================================================= 接上期 : 【数据结构初阶】六、线性表中的队列(链式结构实现队列)-CSDN博客  ===========================

    2024年02月08日
    浏览(45)
  • 【数据结构】--- 博主拍了拍你并向你扔了一“堆”二叉树(堆的概念+结构+代码实现)

    👧个人主页:@小沈熬夜秃头中୧⍤⃝❅ 😚小编介绍:欢迎来到我的乱七八糟小星球🌝 📋专栏:数据结构 🔑本章内容:二叉树—堆 送给各位💌:心有所期全力以赴定有所成. 记得 评论📝 +点赞👍 +收藏😽 +关注💞哦~ 提示:以下是本篇文章正文内容,下面案例可供参考

    2024年02月06日
    浏览(38)
  • 【数据结构】树二叉树的概念以及堆的详解

    ✨链接1:【数据结构】顺序表 ✨链接2:【数据结构】单链表 ✨链接3:【数据结构】双向带头循环链表 ✨链接4:【数据结构】栈和队列 百度百科的解释 :树是一种 非线性 的数据结构,它是由n(n≥0)个有限节点组成一个具有层次关系的集合。 把它叫做树是因为它看起来像

    2024年02月16日
    浏览(40)
  • 【数据结构】堆的应用+TOP-K问题+二叉树遍历

    欢迎来到我的: 世界 希望作者的文章对你有所帮助,有不足的地方还请指正,大家一起学习交流 ! 该篇文章写到主要是:堆排序、 TOP-K问题、二叉树链式结构的实现、二叉树的遍历等等;如果有朋友还不太了解堆以及二叉树可以翻看我的上一篇博客:堆和二叉树的概念; 最

    2024年02月07日
    浏览(54)
  • 数据结构学习记录——什么是堆(优先队列、堆的概念、最大堆最小堆、优先队列的完全二叉树表示、堆的特性、堆的抽象数据类型描述)

    目录 优先队列 若采用数组或链表实现优先队列  数组 链表 有序数组 有序链表 总结 若采用二叉搜索树来实现优先队列 最大堆 堆的概念 优先队列的完全二叉树表示 堆的两个特性  结构性 有序性 【例】最大堆和最小堆 【例】不是堆 堆的抽象数据类型描述 优先队列 (Prio

    2024年02月02日
    浏览(52)
  • 【树与二叉树】二叉树顺序结构实现以及堆的概念及结构--详解介绍

    ​ ​📝个人主页:@Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:数据结构 🎯 长路漫漫浩浩,万事皆有期待 普通二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而 完全二叉树适合使用顺序结构存储 。现实中我们通常把 堆

    2023年04月24日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包