Pytest和Unittest测试框架的区别?

这篇具有很好参考价值的文章主要介绍了Pytest和Unittest测试框架的区别?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

如何区分这两者,很简单unittest作为官方的测试框架,在测试方面更加基础,并且可以再次基础上进行二次开发,同时在用法上格式会更加复杂;而pytest框架作为第三方框架,方便的地方就在于使用更加灵活,并且能够对原有unittest风格的测试用例有很好的兼容性,同时在扩展上更加丰富,可通过扩展的插件增加使用的场景,比如一些并发测试等;

Pytest 安装
pip安装:

pip install pytest

测试安装成功:

pytest --help
 
py.test --help

检查安装版本:

pytest --version

Pytest 示例

Pytest编写规则:

  • 测试文件以test_开头(以_test为结尾)
  • 测试的类以Test开头;
  • 测试的方法以test_开头
  • 断言使用基本的assert

test_example.py

def count_num(a: list) -> int:
    return len(a)
 
 
def test_count():
    assert count_num([1, 2, 3]) != 3

执行测试:

pytest test_example.py

执行结果:

C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest>pytest test_example.py -v
================================================================= test session starts =================================================================
platform win32 -- Python 3.6.8, pytest-6.2.5, py-1.10.0, pluggy-1.0.0 -- d:\coding\python3.6\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest
plugins: Faker-8.11.0
collected 1 item                                                                                                                                       
 
test_example.py::test_count FAILED                                                                                                               [100%]
 
====================================================================== FAILURES =======================================================================
_____________________________________________________________________ test_count ______________________________________________________________________
 
    def test_count():
>       assert count_num([1, 2, 3]) != 3
E       assert 3 != 3
E        +  where 3 = count_num([1, 2, 3])
 
test_example.py:11: AssertionError
=============================================================== short test summary info ===============================================================
FAILED test_example.py::test_count - assert 3 != 3
================================================================== 1 failed in 0.16s ==================================================================

备注:

  • .代表测试通过,F代表测试失败;
  • -v显示详细的测试信息, -h显示pytest命令详细的帮助信息;

标记

默认情况下,pytest会在当前目录下寻找以test_为开头(以_test结尾)的测试文件,并且执行文件内所有以test_为开头(以_test为结尾)的所有函数和方法;

  1. 指定运行测试用例,可以通过::显示标记(文件名::类名::方法名)(文件名::函数名)
pytest test_example3.py::test_odd
  1. 指定一些测试用例测试运行,可以使用-k模糊匹配
pytest -k example
  1. 通过pytest.mark.skip()或者pytest.makr.skipif()条件表达式,跳过指定的测试用例
import pytest
 
test_flag = False
 
@pytest.mark.skip()
def test_odd():
    num = random.randint(0, 100)
    assert num % 2 == 1
 
 
@pytest.mark.skipif(test_flag is False, reason="test_flag is False")
def test_even():
    num = random.randint(0, 1000)
    assert num % 2 == 0
  1. 通过pytest.raises()捕获测试用例可能抛出的异常
def test_zero():
    num = 0
    with pytest.raises(ZeroDivisionError) as e:
        num = 1/0
    exc_msg = e.value.args[0]
    print(exc_msg)
    assert num == 0
  1. 预先知道测试用例会失败,但是不想跳过,需要显示提示信息,使用pytest.mark.xfail()
@pytest.mark.xfail()
def test_sum():
    random_list = [random.randint(0, 100)  for x in range(10)]
    num = sum(random_list)
    assert num < 20
  1. 对测试用例进行多组数据测试,每组参数都能够独立执行一次(可以避免测试用例内部执行单组数据测试不通过后停止测试)
@pytest.mark.parametrize('num,num2', [(1,2),(3,4)])
def test_many_odd(num: int, num2: int):
    assert num % 2 == 1
    assert num2 % 2 == 0

固件(Fixture)

固件就是一些预处理的函数,pytest会在执行测试函数前(或者执行后)加载运行这些固件,常见的应用场景就有数据库的连接和关闭(设备连接和关闭)

简单使用

import pytest
 
 
@pytest.fixture()
def postcode():
    return "hello"
 
 
def test_count(postcode):
    assert postcode == "hello"

 按照官方的解释就是当运行测试函数,会首先检测运行函数的参数,搜索与参数同名的fixture,一旦pytest找到,就会运行这些固件,获取这些固件的返回值(如果有),并将这些返回值作为参数传递给测试函数;

预处理和后处理

接下来进一步验证关于官方的说法:

import pytest
 
 
@pytest.fixture()
def connect_db():
    print("Connect Database in .......")
    yield
    print("Close Database out .......")
 
 
def read_database(key: str):
    p_info = {
        "name": "zhangsan",
        "address": "China Guangzhou",
        "age": 99
    }
    return p_info[key]
 
 
def test_count(connect_db):
    assert read_database("name") == "zhangsan"

 执行测试函数结果:

============================= test session starts =============================
platform win32 -- Python 3.6.8, pytest-6.2.5, py-1.10.0, pluggy-1.0.0 -- D:\Coding\Python3.6\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest
plugins: Faker-8.11.0
collecting ... collected 1 item
 
test_example.py::test_count Connect Database in .......
PASSED                                       [100%]Close Database out .......
 
 
============================== 1 passed in 0.07s ==============================

备注:

首先从结果上看验证了官方的解释,pytest执行测试函数前会寻找同名的固件加载运行;
connect_db固件中有yield,这里pytest默认会判断yield关键词之前的代码属于预处理,会在测试前执行,yield之后的代码则是属于后处理,将在测试后执行;
作用域
从前面大致了解了固件的作用,抽离出一些重复的工作方便复用,同时pytest框架中为了更加精细化控制固件,会使用作用域来进行指定固件的使用范围,(比如在这一模块中的测试函数执行一次即可,不需要模块中的函数重复执行)更加具体的例子就是数据库的连接,这一连接的操作可能是耗时的,我只需要在这一模块的测试函数运行一次即可,不需要每次都运行。

而定义固件是,一般通过scop参数来声明作用,常用的有:

function: 函数级,每个测试函数都会执行一次固件;
class: 类级别,每个测试类执行一次,所有方法都可以使用;
module: 模块级,每个模块执行一次,模块内函数和方法都可使用;
session: 会话级,一次测试只执行一次,所有被找到的函数和方法都可用。

import pytest
 
 
@pytest.fixture(scope="function")
def func_scope():
    print("func_scope")
 
 
@pytest.fixture(scope="module")
def mod_scope():
    print("mod_scope")
 
 
@pytest.fixture(scope="session")
def sess_scope():
    print("session_scope")
 
 
def test_scope(sess_scope, mod_scope, func_scope):
    pass
 
 
def test_scope2(sess_scope, mod_scope, func_scope):
    pass

执行结果:

============================= test session starts =============================
platform win32 -- Python 3.6.8, pytest-6.2.5, py-1.10.0, pluggy-1.0.0 -- D:\Coding\Python3.6\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest
plugins: Faker-8.11.0
collecting ... collected 2 items
 
test_example2.py::test_scope session_scope
mod_scope
func_scope
PASSED                                      [ 50%]
test_example2.py::test_scope2 func_scope
PASSED                                     [100%]
 
============================== 2 passed in 0.07s ==============================

从这里可以看出module,session作用域的固件只执行了一次,可以验证官方的使用介绍

自动执行

有人可能会说,这样子怎么那么麻烦,unittest框架中直接定义setUp就能自动执行预处理,同样的pytest框架也有类似的自动执行; pytest框架中固件一般通过参数autouse控制自动运行。

import pytest
 
 
@pytest.fixture(scope='session', autouse=True)
def connect_db():
   print("Connect Database in .......")
   yield
   print("Close Database out .......")
 
 
def test1():
   print("test1")
 
 
def test2():
   print("test")

 执行结果:

============================= test session starts =============================
platform win32 -- Python 3.6.8, pytest-6.2.5, py-1.10.0, pluggy-1.0.0 -- D:\Coding\Python3.6\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest
plugins: Faker-8.11.0
collecting ... collected 2 items
 
test_example.py::test1 Connect Database in .......
PASSED                                            [ 50%]test1
 
test_example.py::test2 PASSED                                            [100%]test
Close Database out .......
 
 
============================== 2 passed in 0.07s ==============================

从结果看到,测试函数运行前后自动执行了connect_db固件;

参数化

前面简单的提到过了@pytest.mark.parametrize通过参数化测试,而关于固件传入参数时则需要通过pytest框架中内置的固件request,并且通过request.param获取参数

import pytest
 
 
@pytest.fixture(params=[
    ('redis', '6379'),
    ('elasticsearch', '9200')
])
def param(request):
    return request.param
 
 
@pytest.fixture(autouse=True)
def db(param):
    print('\nSucceed to connect %s:%s' % param)
 
    yield
 
    print('\nSucceed to close %s:%s' % param)
 
 
def test_api():
    assert 1 == 1

执行结果:

============================= test session starts =============================
platform win32 -- Python 3.6.8, pytest-6.2.5, py-1.10.0, pluggy-1.0.0 -- D:\Coding\Python3.6\python.exe
cachedir: .pytest_cache
rootdir: C:\Users\libuliduobuqiuqiu\Desktop\GitProjects\PythonDemo\pytest
plugins: Faker-8.11.0
collecting ... collected 2 items
 
test_example.py::test_api[param0] 
Succeed to connect redis:6379
PASSED                                 [ 50%]
Succeed to close redis:6379
 
test_example.py::test_api[param1] 
Succeed to connect elasticsearch:9200
PASSED                                 [100%]
Succeed to close elasticsearch:9200
 
 
============================== 2 passed in 0.07s ==============================

这里模拟连接redis和elasticsearch,加载固件自动执行连接然后执行测试函数再断开连接。

总结
对于开发来说为什么也要学习自动化测试这一块,很重要的一点就是通过自动化测试节省一些重复工作的时间,同时对于优化代码结构,提高代码覆盖率,以及后续项目重构都是有着很重要的意义,同时理解pytest和unittest在基础上有何区别有助于不同的业务场景中选择适合自己的测试工具。
这篇文章只是简单的介绍了pytest的基本使用,有兴趣的可以去看看官方文档,官方文档中还提到了如内置固件的使用,常用测试的场景等等。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

Pytest和Unittest测试框架的区别?,软件测试,自动化测试,pytest,python,开发语言

软件测试面试小程序

被百万人刷爆的软件测试题库!!!谁用谁知道!!!全网最全面试刷题小程序,手机就可以刷题,地铁上公交上,卷起来!

涵盖以下这些面试题板块:

1、软件测试基础理论 ,2、web,app,接口功能测试 ,3、网络 ,4、数据库 ,5、linux

6、web,app,接口自动化 ,7、性能测试 ,8、编程基础,9、hr面试题 ,10、开放性测试题,11、安全测试,12、计算机基础

 Pytest和Unittest测试框架的区别?,软件测试,自动化测试,pytest,python,开发语言

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

Pytest和Unittest测试框架的区别?,软件测试,自动化测试,pytest,python,开发语言文章来源地址https://www.toymoban.com/news/detail-675493.html

到了这里,关于Pytest和Unittest测试框架的区别?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 震惊!强大的接口自动化测试框架2.0,unittest与pytest无缝穿插对接,可以像postman一样编写代码

    接口自动化测试项目2.0 本框架主要是基于 Python + unittest + ddt + HTMLTestRunner + log + excel + mysql + 企业微信通知 + Jenkins 实现的接口自动化框架。 项目参与者: 陈勇志 技术支持邮箱: 262667641@qq.com 个人微信: Testing_player 个人博客地址: https://home.cnblogs.com/u/Nephalem-262667641 微信公众号:测

    2024年02月12日
    浏览(47)
  • 软件测试Pytest实现接口自动化应该如何在用例执行后打印日志到日志目录生成日志文件?

    Pytest可以使用内置的logging模块来实现接口自动化测试用例执行后打印日志到日志目录以生成日志文件。以下是实现步骤: 1、在pytest配置文件(conftest.py)中,定义一个日志输出路径,并设置logging模块。 2、在测试用例中调用logging模块,输入需要生成的日志信息。 3、运行p

    2024年02月10日
    浏览(62)
  • 软件测试 | 测试开发 | Django+Celery框架自动化定时任务开发

    ** 本章介绍使用DjCelery即Django+Celery框架开发定时任务功能,在Autotestplat平台上实现单一接口自动化测试脚本、业务场景接口自动化测试脚本、App自动化测试脚本、Web自动化测试脚本等任务的定时执行、调度、管理等,从而取代Jenkins上的定时执行脚本和发送邮件等功能。** 自动

    2023年04月08日
    浏览(56)
  • 【软件测试】UI自动化框架,数据驱动 vs 关键字驱动怎么选

    让我们先从分析一端自动化测试案例的代码开始我们的旅程。以下是我之前写的一个自动化测试的小Demo。这个Demo 基于Selenium与Java 。 自动化测试小Demo 它要测试的东西其实是要看一下百度搜索能不能返回兴业银行的官网。我们分析一下这段代码都包含些什么东西。 第一,这

    2024年02月13日
    浏览(55)
  • 【接口自动化测试项目2.0】unittest与pytest无缝穿插对接,可以像postman一样编写代码

    📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正! 📢交流讨论:欢迎加入我们一起学习! 📢资源分享:耗时200+小时精选的「软件测试」资料包 📢 最困难的时候,也就是我们离成功不远的时候! 接口自动化测试项目2.0 本框架主要是基于

    2024年02月03日
    浏览(62)
  • 自动化测试——unittest框架(单元测试)

    目录 一、unittest框架解析 1.1unittest的5个重要概念 1.1测试用例的编写及代码 1.2断言 1.3用例的执行顺序 1.4测试用例综合管理框架 1.5HTML报告生成 参考博文 unittest 单元测试提供了创建测试用例,测试套件以及批量执行的方案, unittest 在安装pyhton 以后就直接自带了,直接import

    2024年01月17日
    浏览(77)
  • unittest自动化测试框架详解

    目录 一、单元测试的定义 二、unittest框架及原理 三、unittest的断言 四、TestCase测试用例 五、TestFixure测试夹具 六、TestSuite测试套件 七、TestRunner执行用例 ​ 单元测试是指,对软件中的最小可测试单元在与程序其他部分相隔离的情况下进行检查和验证的工作,这里的最小可测

    2024年02月04日
    浏览(68)
  • 自动化测试框架之unittest

    unittest 是python 的单元测试框架,它主要有以下作用: 提供用例组织与执行 :当你的测试用例只有几条时,可以不必考虑用例的组织,但是,当测试用例达到成百上千条时,大量的测试用例堆砌在一起,就产生了扩展性与维护性等问题,此时需要考虑用例的规范与组织问题了

    2024年02月01日
    浏览(44)
  • Python自动化测试框架:unittest介绍

    Unittest是Python中最常用的测试框架之一,它提供了丰富和强大的测试工具和方法,可以帮助开发者更好地保证代码质量和稳定性,本文就来介绍下Unittest单元测试框架。 unittest是Python的单元测试框架,它提供了一套丰富的测试工具和方法,包括测试用例、测试套件、断言、测试

    2024年02月05日
    浏览(57)
  • (六)Selenium自动化测试实战—unittest框架

    上一篇:(五)Selenium自动化测试实战—PO模式_要开朗的spookypop的博客-CSDN博客 先看下代码的运行效果: 运行自动化测试代码 unittest是python单元测试框架,它提供了一组丰富的工具来构建和运行测试,可以满足日常做自动化测试的需求。 上一篇详细的介绍了如何用PO模式写登

    2023年04月14日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包