强化学习系列--时序差分学习方法(SARSA算法)

这篇具有很好参考价值的文章主要介绍了强化学习系列--时序差分学习方法(SARSA算法)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

介绍

SARSA(State-Action-Reward-State-Action)是一种强化学习算法,用于解决马尔可夫决策过程(MDP)中的问题。SARSA算法属于基于值的强化学习算法,用于学习最优策略。

在SARSA算法中,智能体通过与环境进行交互来学习。它基于当前状态、选择的动作、获得的奖励、下一个状态和下一个动作来更新价值函数(或者动作值函数),并根据更新后的价值函数选择下一个动作。

SARSA算法的更新规则如下:

Q(s, a) = Q(s, a) + α * (r(s,a,s’) + γ * Q(s’, a’) - Q(s, a))

其中,Q(s, a) 表示在状态 s 执行动作 a 的动作值函数,α 是学习率,r 是即时奖励,γ 是折扣因子,s’ 是下一个状态,a’ 是在下一个状态下选择的动作。

SARSA算法的核心思想是根据当前策略进行动作选择,并根据选择的动作和环境的反馈进行更新。它使用一种称为ε-greedy策略的方法,即以ε的概率选择一个随机动作,以1-ε的概率选择当前最优的动作。这样可以在探索和利用之间进行权衡,有助于智能体探索新的状态和动作,并最终学习到最优策略。

SARSA算法的步骤如下:

  1. 初始化动作值函数 Q(s, a) 为任意值;
  2. 选择初始状态 s;
  3. 根据当前策略选择动作 a;
  4. 执行动作 a,观察下一个状态 s’ 和即时奖励 r;
  5. 根据当前策略选择下一个动作 a’;
  6. 更新动作值函数:Q(s, a) = Q(s, a) + α * (r + γ * Q(s’, a’) - Q(s, a));
  7. 将状态更新为下一个状态:s = s’;
  8. 将动作更新为下一个动作:a = a’;
  9. 重复步骤3到8,直到达到终止状态。

通过不断与环境交互和更新动作值函数,SARSA算法能够逐步学习到最优策略,并在最优策略下获得最大的累积奖励。

示例代码

以下是一个简单的示例代码,演示了如何使用SARSA算法来解决一个简单的强化学习问题:

import numpy as np

# 定义环境
num_states = 5
num_actions = 3
Q = np.zeros((num_states, num_actions))  # 动作值函数
rewards = np.array([[-1, 0, -1],  # 状态0的奖励表
                    [-1, -1, 0],  # 状态1的奖励表
                    [0, -1, -1],  # 状态2的奖励表
                    [-1, 0, -1],  # 状态3的奖励表
                    [-1, -1, 0]])  # 状态4的奖励表
gamma = 0.8  # 折扣因子
alpha = 0.1  # 学习率
epsilon = 0.1  # ε-greedy策略的ε值

# 定义SARSA算法
def sarsa(num_episodes):
    for episode in range(num_episodes):
        state = 0  # 初始状态
        action = epsilon_greedy(state)  # 初始动作

        while state != num_states - 1:  # 直到达到终止状态
            next_state = action  # 下一个状态为当前动作
            next_action = epsilon_greedy(next_state)  # 下一个动作

            # 使用SARSA更新动作值函数
            Q[state, action] += alpha * (rewards[state, action] + gamma * Q[next_state, next_action] - Q[state, action])

            state = next_state
            action = next_action

# ε-greedy策略
def epsilon_greedy(state):
    if np.random.uniform(0, 1) < epsilon:
        action = np.random.randint(num_actions)  # 随机选择一个动作
    else:
        action = np.argmax(Q[state])  # 选择具有最大动作值的动作
    return action

# 运行SARSA算法
sarsa(num_episodes=100)

# 输出结果
print("最优动作值函数:")
print(Q)

这个示例代码是一个简单的强化学习问题,具有5个状态和3个动作。在每个状态下,根据rewards矩阵给出的即时奖励,智能体通过SARSA算法逐步更新动作值函数Q。最后,输出最优的动作值函数Q。文章来源地址https://www.toymoban.com/news/detail-675514.html

到了这里,关于强化学习系列--时序差分学习方法(SARSA算法)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 通识强化学习,初步了解强化学习的运行规则和估值方法

    目录 1.强化学习的发展及应用现状 1.1.强化学习的由来 1.2.强化学习的应用 2.强化学习的基本概念 2.1.概要介绍 2.2.强化学习的构成要素 2.3.工作过程 2.4.强化学习的主要特点 2.5.与其他机器学习方法的区别 3.估值方法 3.1.估值的方式 3.2.依据更新方式 目前,大家认为强化学习(

    2024年02月16日
    浏览(28)
  • 无模型的强化学习方法

    学习「强化学习」(基于这本教材,强烈推荐)时的一些总结,在此记录一下。 动态规划算法需要马尔可夫决策过程是已知的(状态转移函数、奖励函数已知),智能体不用真正地与环境互动也能在「理性」世界里求得最优策略。 现实通常并非如此,环境已知恰恰是很少见

    2024年03月09日
    浏览(39)
  • 强化学习价值函数方法笔记

    在强化学习中,价值函数(Value Function)是一个核心概念,它用于衡量在不同状态或状态-动作对下,一个智能体(agent)可以获得的预期累积奖励。价值函数对于智能体做出决策和学习行为策略非常重要。 价值函数可以分为两种类型: 状态价值函数(State Value Function):记作

    2024年02月15日
    浏览(26)
  • 基于动态规划的强化学习方法

    quad quad quad 动态规划(dynamic programming)是程序设计算法中非常重要的内容,能够高效解决一些经典问题,例如 背包问题 和 最短路径规划 。动态规划的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到目标问题的解。动态规划会保

    2023年04月08日
    浏览(62)
  • 强化学习:蒙特卡洛方法(MC)

       以抛硬币为例,将结果(正面朝上或反面朝上)表示为作为随机变量 X X X ,如果正面朝上则 X = + 1 X=+1 X = + 1 ,如果反面朝上,则 X = − 1 X=-1 X = − 1 ,现在要计算 E [ X ] E[X] E [ X ] 。    我们通常很容易想到直接用定义来计算,因为我们知道正面朝上和反面朝上的概率都是

    2024年02月08日
    浏览(33)
  • 强化学习基础三大优化方法:(一)动态规划

    强化学习是一类解决马尔可夫决策过程的方法,其中, 动态规划、蒙特卡洛 以及 时序差分 是强化学习算法的三大基础算法。本文就其实际效果来对比三种方法以及其子方法的不同与优缺点。本文就动态规划方法进行简单介绍。 动态规划是一类优化方法,在给定一个马尔可

    2024年02月08日
    浏览(68)
  • 深入理解强化学习——马尔可夫决策过程:动态规划方法

    分类目录:《深入理解强化学习》总目录 动态规划(Dynamic Programming,DP)适合解决满足最优子结构(Optimal Substructure)和重叠子问题(Overlapping Subproblem)两个性质的问题。最优子结构意味着,问题可以拆分成一个个的小问题,通过解决这些小问题,我们能够组合小问题的答案

    2024年02月03日
    浏览(34)
  • 强化学习中的动态规划与蒙特卡罗方法

    强化学习(Reinforcement Learning,RL)是一种机器学习方法,它通过与环境的互动来学习如何做出最佳决策。强化学习的目标是找到一种策略,使得在长期内累积最大化奖励。强化学习的一个关键特点是它需要在环境中探索和利用,以找到最佳的行为策略。 动态规划(Dynamic Programmi

    2024年02月19日
    浏览(27)
  • 基于注意力神经网络的深度强化学习探索方法:ARiADNE

    参考论文:Cao Y, Hou T, Wang Y, et al. Ariadne: A reinforcement learning approach using attention-based deep networks for exploration[J]. arXiv preprint arXiv:2301.11575, 2023. 2023 IEEE International Conference on Robotics and Automation (ICRA 2023) ARE的传统边界法 自主机器人探索(Autonomous robot exploration, ARE) 目标: ARE的目标是规

    2024年02月12日
    浏览(32)
  • 强化学习基础篇[2]:SARSA、Q-learning算法简介、应用举例、优缺点分析

    【强化学习原理+项目专栏】必看系列:单智能体、多智能体算法原理+项目实战、相关技巧(调参、画图等、趣味项目实现、学术应用项目实现 专栏详细介绍 :【强化学习原理+项目专栏】必看系列:单智能体、多智能体算法原理+项目实战、相关技巧(调参、画图等、趣味项

    2024年02月07日
    浏览(29)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包