使用实体解析和图形神经网络进行欺诈检测

这篇具有很好参考价值的文章主要介绍了使用实体解析和图形神经网络进行欺诈检测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

使用实体解析和图形神经网络进行欺诈检测,数据挖掘和量化分析,神经网络,人工智能,深度学习

图形神经网络的表示形式(作者使用必应图像创建器生成的图像)

一、说明

        对于金融、电子商务和其他相关行业来说,在线欺诈是一个日益严重的问题。为了应对这种威胁,组织使用基于机器学习和行为分析的欺诈检测机制。这些技术能够实时检测异常模式、异常行为和欺诈活动。

        不幸的是,通常只考虑当前交易,例如订单,或者该过程仅基于客户配置文件中的历史数据,这些数据由客户ID标识。但是,专业欺诈者可能会使用低价值交易创建客户资料,以建立其个人资料的正面形象。此外,他们可能会同时创建多个类似的配置文件。只有在欺诈发生后,被攻击的公司才意识到这些客户资料是相互关联的。文章来源地址https://www.toymoban.com/news/detail-675749.html

到了这里,关于使用实体解析和图形神经网络进行欺诈检测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用matlab里的神经网络进行数据分类预测

    在MATLAB中使用神经网络进行数据分类预测,你可以按照以下步骤进行: Step 1: 准备数据 首先,准备用于训练和测试神经网络的数据。将数据集分为输入特征和相应的目标类别。确保数据已经进行了适当的预处理和标准化。 Step 2: 创建并训练神经网络模型 使用MATLAB的Neural Net

    2024年02月16日
    浏览(43)
  • 使用python里的神经网络进行数据分类预测

    在Python中使用神经网络进行数据分类预测,可以使用深度学习库如TensorFlow、Keras或PyTorch来实现。以下是使用Keras库的示例代码: Step 1: 准备数据 首先,准备用于训练和测试神经网络的数据集。将数据集分为输入特征和相应的目标类别。确保对数据进行适当处理和归一化。 S

    2024年02月16日
    浏览(35)
  • MATLAB——使用建立好的神经网络进行分类程序

    学习目标:使用建立好的神经网络(训练好并保存,下次直接调用该神经网络)进行分类 clear all; close all; P=[-0.4 -0.4 0.5 -0.2 -0.7;-0.6 0.6 -0.4 0.3 0.8];      %输入向量 T=[1 1 0 0 1];                                          %输出向量 plotpv(P,T);                              

    2024年02月13日
    浏览(26)
  • 机器学习16:使用 TensorFlow 进行神经网络编程练习

    在【机器学习15】中,笔者介绍了神经网络的基本原理。在本篇中,我们使用 TensorFlow 来训练、验证神经网络模型,并探索不同 “层数+节点数” 对模型预测效果的影响,以便读者对神经网络模型有一个更加直观的认识。 目录 1.导入依赖模块 2.加载数据集 3.表示数据

    2024年02月12日
    浏览(37)
  • 【复杂网络建模】——使用PyTorch和DGL库实现图神经网络进行链路预测

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机科学与技术研究生在读 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+  目录 1、常见的链路预测方法 2、图神经网络上的链路预测 3、使用PyTorc

    2024年02月09日
    浏览(38)
  • 使用自己的数据利用pytorch搭建全连接神经网络进行回归预测

    引入必要的库,包括PyTorch、Pandas等。 这里使用sklearn自带的加利福尼亚房价数据,首次运行会下载数据集,建议下载之后,处理成csv格式单独保存,再重新读取。 后续完整代码中,数据也是采用先下载,单独保存之后,再重新读取的方式。

    2024年02月13日
    浏览(46)
  • OpenCV for Unity使用深度学习神经网络进行图像识别对象检测

    本文使用的是OpenCV for Unity 2.4.5 1.打开AssetsOpenCVForUnityStreamingAssetsdnnsetup_dnn_module.pdf 2.按照提示下载person.jpg、yolov4-tiny.cfg、yolov4-tiny.weights、coco.names  3.打开场景AssetsOpenCVForUnityExamplesMainModulesdnnYoloObjectDetectionExampleYoloObjectDetectionWebCamTextureExample.unity 4. 配置Dnn参数  5.运行

    2024年02月12日
    浏览(53)
  • 【神经网络结构可视化】PlotNeuralNet的安装、测试及创建自己的神经网络结构可视化图形

    1、下载MikTeX 下载链接: MikTeX ( https://miktex.org/download ) 2、下载Git bash 下载链接: Git bash ( https://git-scm.com/download/win ) 3、下载PlotNeuralNet 下载链接: PlotNeuralNet ( https://github.com/HarisIqbal88/PlotNeuralNet?tab=readme-ov-file ) 1、解压PlotNeuralNet-master.zip 将下载的PlotNeuralNet-master.zip解压到当前

    2024年04月25日
    浏览(45)
  • Python实战 | 使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别

    专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https://blog.csdn.net/superdangbo/category_9271502.html tensorflow专栏:https://blog.csdn.net/superdangbo/category_869

    2024年02月05日
    浏览(45)
  • AI:162-如何使用Python进行图像识别与处理深度学习与卷积神经网络的应用

    本文收录于专栏:精通AI实战千例专栏合集 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~ 在当今数字化时代,图像处

    2024年04月26日
    浏览(80)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包