【详解】文本检测OCR模型的评价指标

这篇具有很好参考价值的文章主要介绍了【详解】文本检测OCR模型的评价指标。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

关于文本检测OCR模型的评价指标

前言:网上关于评价标准乱七八糟的,有关于单词的,有关于段落的,似乎没见过谁解释一下常见论文中常用的评价指标具体是怎么计算的,比如DBNet,比如RCNN,这似乎好像默认大家都知道咋算了。

好吧,我不知道,我刚搞懂,做个笔记。

识别网络

识别网络是最简单的,只有一个指标,就是准确率

检测正确的图像占总图像的比例
a c c u r a c y = 检测正确的小图数量 数据集中所有的小图数量 accuracy = \frac{检测正确的小图数量}{数据集中所有的小图数量} accuracy=数据集中所有的小图数量检测正确的小图数量

这里的图像指的是“小图”,如下所示:

【详解】文本检测OCR模型的评价指标,奇奇怪怪的知识随记,ocr,笔记,评价指标
【详解】文本检测OCR模型的评价指标,奇奇怪怪的知识随记,ocr,笔记,评价指标

识别结果就是文本,如果识别结果与标注一致,即为正样本。

检测网络

检测网络就是采用的二分类的最简单的混淆矩阵
有框没框,框的位置对不对,都需要设定阈值进行限定

【详解】文本检测OCR模型的评价指标,奇奇怪怪的知识随记,ocr,笔记,评价指标

 Precision  = T P T P + F P \text { Precision }=\frac{T P}{T P+F P}  Precision =TP+FPTP
 Recall  = T P T P + F N \text { Recall }=\frac{T P}{T P+F N}  Recall =TP+FNTP
F Score  = ( 1 + β 2 )  Precision  ⋅  Recall  β 2 ⋅  Precision  +  Recall  ( β 系数一般取 1 ) F_{\text {Score }}=\left(1+\beta^2\right) \frac{\text { Precision } \cdot \text { Recall }}{\beta^2 \cdot \text { Precision }+ \text { Recall }} (\beta系数一般取1) FScore =(1+β2)β2 Precision + Recall  Precision  Recall β系数一般取1

两者和在一起组成OCR系统,以paddleOCR为例

官方指标评估代码与方法

PaddleOCR计算三个OCR检测相关的指标,分别是:Precision、Recall、Hmean(F-Score)。

PS:这里,Hmean与F-Score在PaddleOCR-V1中是分开的,Hmean特指检测位置部分的指标,F-Score特指OCR系统的指标,V2V3就没区分了,全部都是OCR系统的指标。

区别在于:TP的计算,OCR系统的指标需要:真实有框的位置,预测为有框,且识别结果正确。

依据论文:
【详解】文本检测OCR模型的评价指标,奇奇怪怪的知识随记,ocr,笔记,评价指标

举个非常好的例子

【详解】文本检测OCR模型的评价指标,奇奇怪怪的知识随记,ocr,笔记,评价指标
如上图所示:

  • 真实有框的数量为10个
  • 真实有框和预测有框对上的数量有7个:TP=7(绿蓝)
  • 但其中只有5个识别正确,所以:TP=5(红绿蓝)
  • 真实没框和预测有框的数量为2个:FP=2(纯蓝)
  • 真实有框但没有预测出来的有3个:FN=3(纯绿)

计算如下:

检测算法指标计算:

 Precision  = T P T P + F P = 7 7 + 2 = 0.7778 \text { Precision }=\frac{T P}{T P+F P}=\frac{7}{7+2}=0.7778  Precision =TP+FPTP=7+27=0.7778
 Recall  = T P T P + F N = 7 7 + 3 = 0.7 \text { Recall }=\frac{T P}{T P+F N}=\frac{7}{7+3}=0.7  Recall =TP+FNTP=7+37=0.7
F Score  = ( 1 + β 2 )  Precision  ⋅  Recall  β 2 ⋅  Precision  +  Recall  = ( 2 )  0.7778  ⋅  0.7  1 ⋅  0.7778  + 0.7  = 0.73685 F_{\text {Score }}=\left(1+\beta^2\right) \frac{\text { Precision } \cdot \text { Recall }}{\beta^2 \cdot \text { Precision }+ \text { Recall }}=\left(2\right) \frac{\text { 0.7778 } \cdot \text { 0.7 }}{1 \cdot \text { 0.7778 }+ \text {0.7 }}=0.73685 FScore =(1+β2)β2 Precision + Recall  Precision  Recall =(2)1 0.7778 +0.7  0.7778  0.7 =0.73685

整体OCR系统指标计算:

 Precision  = T P T P + F P = 5 5 + 2 = 0.714 \text { Precision }=\frac{T P}{T P+F P}=\frac{5}{5+2}=0.714  Precision =TP+FPTP=5+25=0.714
 Recall  = T P T P + F N = 5 5 + 3 = 0.625 \text { Recall }=\frac{T P}{T P+F N}=\frac{5}{5+3}=0.625  Recall =TP+FNTP=5+35=0.625
F Score  = ( 1 + β 2 )  Precision  ⋅  Recall  β 2 ⋅  Precision  +  Recall  = ( 2 )  0.714  ⋅  0.625  1 ⋅  0.714  +  0.625  = 0.66654 F_{\text {Score }}=\left(1+\beta^2\right) \frac{\text { Precision } \cdot \text { Recall }}{\beta^2 \cdot \text { Precision }+ \text { Recall }}=\left(2\right) \frac{\text { 0.714 } \cdot \text { 0.625 }}{1 \cdot \text { 0.714 }+ \text { 0.625 }}=0.66654 FScore =(1+β2)β2 Precision + Recall  Precision  Recall =(2)1 0.714 + 0.625  0.714  0.625 =0.66654文章来源地址https://www.toymoban.com/news/detail-675938.html

到了这里,关于【详解】文本检测OCR模型的评价指标的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【目标检测】目标检测的评价指标(七个)

    样本在计算机视觉的评价中是非常重要的概念,正样本比较好理解,是要检测的物体,负样本是不要检测的目标。这里负样本会有一些问题,首先负样本定义比较主观,其次负样本和正样本的量纲不在一个级别,那么实际算法中会把检测出的待选区域中的一部分作为正样本,

    2024年02月04日
    浏览(40)
  • 目标检测评价指标

    IoU(交并比) 1、IOU的全称为交并比(Intersection over Union), 是目标检测中使用的一个概念,IoU计算的是“预测的边框”和“真实的边框”的交叠率,即它们的交集和并集的比值 。 2、IoU等于“预测的边框”和“真实的边框”之间交集和并集的比值。 IoU计算如下图,B1为真实

    2024年02月05日
    浏览(41)
  • 04- 评价指标mAP (目标检测)

    要点: Precision  (准确率 ): TP/(TP+FP) , 即模型给出的所有预测结果中命中真实目标的比例 。 Recall  (召回率): TP/(TP+FN) , 被找到的正确目标和所有正确目标的比值 。 官方文档: https://cocodataset.org/#detection-eval 参考文章: mAP的计算 TP   (True Positive): 一个正确的检测 ,检测

    2024年02月03日
    浏览(44)
  • 目标检测网络的常见评价指标

    声明:原视频链接https://www.bilibili.com/video/BV13k4y1m7DY?spm_id_from=333.880.my_history.page.click 下面是我的笔记,截图均来自原视频。 举例说明:单类物体检测时,以人脸检测为例。如图 绿色 实线和虚线框:人脸的真实标注 红色 的实线框和虚线框:算法的检测结果 框左上角的 红色数

    2024年02月06日
    浏览(48)
  • 目标检测常用评价指标及其计算方法

    前传耗时(ms) :从输入一张图像到输出最终结果所消耗的时间,包括前处理耗时(如图像归一化)、网络前传耗时、后处理耗时(如非极大值抑制); 每秒帧数FPS(Frames Per Second) :每秒中能处理的图像数量; 浮点运算量(FLOPS) :处理一张图像所需要的浮点运算数量,跟具体软

    2024年02月06日
    浏览(51)
  • 目标检测重要评价指标——mAP的含义及计算

    目标检测常见评价指标 1. 公开数据集 评价标准:pascal voc, coco,目前基本都在使用coco数据集。 2.评价指标 mAP: mean Average Precision, 即所有类别AP的平均值。 下面将介绍相关参数含义。 理论知识 : TP(True Positive) :与目标框(ground truth) IoU0.5的检测框数量 (同一个Ground Truth 只计

    2023年04月09日
    浏览(42)
  • 模型评价指标—F1值

    最近空余时间在参加数字中国创新大赛,比赛规则是根据模型的F1值对参赛者进行排名。为了更深刻地理解这个指标,我最近对它做了一些梳理,现在把它分享给更多有需要的人图片。最近在参赛时也发现了一个问题,就是算法在训练集上完全拟合(KS=1),但是到测试集上衰退

    2024年02月08日
    浏览(41)
  • 【目标检测】评价指标:混淆矩阵概念及其计算方法(yolo源码)

    本篇文章首先介绍目标检测任务中的评价指标 混淆矩阵 的概念,然后介绍其在 yolo源码 中的实现方法。 目标检测中的评价指标: mAP概念及其代码实现(yolo源码/pycocotools) 混淆矩阵概念及其代码实现(yolo源码)   在分类任务中, 混淆矩阵(Confusion Matrix) 是一种可视化工具,主

    2024年02月02日
    浏览(54)
  • 文本-图像生成(Text-to-Image Generation)的评价指标介绍——CLIPScore、TISE

    论文标题:CLIPScore: A Reference-free Evaluation Metric for Image Captioning 这一篇是针对Image Caption领域的评价指标,但是有些基于条件的Diffusion模型也使用了这个评价指标来衡量文本和生成图像的匹配程度。 本文提出的CLIPScore(下文简称CLIPS)是不需要推理的评估指标,之前常见的基于

    2023年04月08日
    浏览(46)
  • OCR -- 文本检测

    目录 目标检测: 文本检测: 检测难点: 检测方法: 基于回归的文本检测 水平文本检测 任意角度文本检测 弯曲文本检测 基于分割的文本检测 代码示例 可视化文本检测预测 DB文本检测模型构建 backbone网络 FPN网络 Head网络 百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 预测

    2024年02月06日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包