【论文笔记】最近看的时空数据挖掘综述整理8.27

这篇具有很好参考价值的文章主要介绍了【论文笔记】最近看的时空数据挖掘综述整理8.27。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Deep Learning for Spatio-Temporal Data Mining: A Survey

被引用次数:392

[Submitted on 11 Jun 2019 (v1), last revised 24 Jun 2019 (this version, v2)]

主要内容: 该论文是一篇关于深度学习在时空数据挖掘中的应用的综述。论文首先介绍了时空数据挖掘的背景和意义,然后详细介绍了深度学习在时空数据挖掘中的应用,包括卷积神经网络(CNN)、循环神经网络(RNN)等模型在时空数据中的特征学习、时空数据的表示方法、时空数据的预测和分类等任务。此外,论文还介绍了一些深度学习在时空数据挖掘中的应用案例,如交通流量预测、犯罪预测等。

Ⅰ. introduction
  • 介绍了时空数据挖掘的背景和意义

    • 时空数据挖掘是指从时空数据中发现有用的知识和模式的过程。
    • 时空数据挖掘在很多领域都有应用,如交通、气象、医疗等,可以帮助人们更好地理解和预测现象。
  • 传统数据挖掘方法在处理时空数据时的局限性。

    • 随着时空数据集的数量、体积和分辨率的迅速增加,传统的数据挖掘方法,特别是基于统计的方法,已经无法处理这些数据。

    因此,深度学习技术的发展为时空数据挖掘提供了新的机会和挑战。

Ⅱ. categorization of spatio-temporal data
  • 数据类型
    • 点数据
    • 线数据
    • 面数据
  • 数据来源
    • 传感器数据
    • 人工采集数据
    • 模拟数据
  • 数据表示
    • 矢量数据
    • 栅格数据
Ⅲ. Framework
  • ADAIN model :包括了多源数据的特征提取和融合、FNN和RNN模型的特征学习、全连接层的预测等步骤。
  • ST-ResNet : 基于残差神经网络,用于预测城市中每个区域的人流量。该模型框架包括了外部特征和人流量数据的特征提取和融合、残差神经网络的特征学习等步骤。
Ⅳ. Deep Learning Models for addressing different STDM problems

主要介绍了基于深度学习模型解决不同时空数据管理问题的方法。

  • 首先将时空数据管理问题分为不同的类别,包括预测、表示学习、检测、分类、推断/估计、推荐等。
  • 介绍了针对不同类别问题所提出的深度学习模型,包括卷积神经网络、循环神经网络、自编码器、生成对抗网络等。
  • 总结了当前深度学习模型在不同领域的应用,包括交通、气候和天气、人类移动性、基于位置的社交网络、犯罪分析和神经科学等。
Ⅴ. Applications
  • 交通流量预测
  • 按需服务
  • 气候/天气
  • 人流预测
  • 基于位置的社交网络(LBSN)
  • 犯罪预测
  • 神经科学
Ⅵ. Open Problem
  • 模型可解释性
  • 深度学习模型选择
  • STDM任务的扩展应用
  • ST数据集多模态融合

Spatio-Temporal Data Mining: A Survey of Problems and Methods

被引用次数:418

[Submitted on 13 Nov 2017 (v1), last revised 17 Nov 2017 (this version, v2)]

问题&方法
  • 1.轨迹模式挖掘
    • 基于聚类的方法:基于密度聚类、基于网络聚类、基于子轨迹聚类
    • 基于序列模式挖掘的方法:频繁序列挖掘、序列聚类
    • 基于分类的方法:基于决策树分类、基于SVM分类
    • 基于关联规则方法:频繁模式挖掘、关联规则挖掘
  • 2.时空聚类
    • 传统聚类方法:K-means、层次聚类、共享最近邻聚类、归一化割聚类
    • 混合模型方法:高斯混合模型、隐马尔可夫模型
    • 密度聚类方法:DBSCAN聚类、OPTICS聚类
    • 基于图的聚类方法:谱聚类,模块度最优化聚类
    • 基于子序列聚类方法:基于动态时间规整的子序列聚类
  • 3.时空分类
    • 基于统计学习的方法:支持向量机、决策树、随机森林
    • 基于聚类的方法:K-mean聚类、层次聚类、DBSCAN聚类
    • 基于贝叶斯网络的方法:动态贝叶斯网络、半马尔可夫决策过程
    • 基于规则的方法:分类规则、关联规则
    • 基于神经网络的方法:卷积神经网络、循环神经网络
  • 4.时空关联规则挖掘
    • 基于时空窗口的方法:滑动时空窗口、固定时空窗口
    • 基于序列模式挖掘的方法:频繁序列挖掘、序列聚类
    • 基于关联规则挖掘的方法:频繁模式挖掘、关联规则挖掘
  • 5.时空异常检测
    • 基于统计学习的方法:支持向量机、随机森林、神经网络
    • 基于聚类的方法:K-means、DBSCAN聚类
    • 基于密度的方法:LOF、OPTICS
    • 基于时空窗口的方法:滑动时空窗口、固定时空窗口
    • 基于时空关联规则的方法:时空关联规则挖掘
  • 6.时空预测
    • 基于时间序列的方法:ARIMA模型、指数平滑模型、状态空间模型
    • 基于回归的方法:线性回归、岭回归、Lasso回归
    • 基于机器学习的方法:支持向量机、随机森林、神经网络
    • 基于时空关联规则的方法:时空关联规则挖掘
    • 基于深度学习的方法:卷积神经网络、循环神经网络

Transformers in Time Series: A Survey

被引用次数:188

[Submitted on 15 Feb 2022 (v1), last revised 11 May 2023 (this version, v5)]

主要内容

本论文是一篇关于时间序列Transformer的综述,系统地回顾了Transformer在时间序列建模中的应用。论文首先介绍了Transformer的基本概念,然后从网络修改和应用领域的角度提出了一个新的分类法。在网络修改方面,论文讨论了对Transformer进行的低层次(即模块)和高层次(即架构)的改进,以优化时间序列建模的性能。在应用方面,论文分析和总结了用于流行的时间序列任务(包括预测、异常检测和分类)的Transformer。对于每个时间序列Transformer,论文分析了其见解、优点和局限性。为了提供有效使用Transformer进行时间序列建模的实用指南,论文进行了广泛的实证研究,包括鲁棒性分析、模型大小分析和季节趋势分解分析。最后,论文讨论了时间序列Transformer的未来发展方向。

主要贡献

本论文的主要贡献在于系统地回顾了Transformer在时间序列建模中的应用,提出了一个新的分类法,并分析了每个时间序列Transformer的见解、优点和局限性。此外,论文还进行了广泛的实证研究,为使用Transformer进行时间序列建模提供了实用指南。

网络修改方面的改进
  • 位置编码:将输入时间序列的位置信息编码为向量,并注入到模型中作为一个额外的输入。
  • 门控线性单元:GLU可以在Transformer中引入非线性性,从而提高模型的表达能力。
  • 多层感知机:可以使用MLP来提高模型的表达能力。
  • 自适应注意力(Adaptive Attention):可以根据输入序列的特征自适应地调整注意力权重,从而提高模型的性能。
  • 时间卷积(Temporal Convolution):可以提高模型的表达能力。
  • 时序卷积网络(Temporal Convolutional Networks,TCN)
  • 时序自注意力(Temporal Self-Attention)
Table 1: Complexity comparisons of popular time series Transformers with different attention modules.
Training Testing
Methods Time Memory Steps
Transformer O(N^2) O(N^2) N
LogTrans O(NlogN) O(NlogN) 1
Informer O(NlogN) O(NlogN) 1
Autoformer O(NlogN) O(NlogN) 1
Pyraformer O(N) O(N) 1
Quatformer O(2cN) O(2cN) 1
FEDformer O(N) O(N) 1
Crossformer O(DN^2/(Lseg^2)) O(N) 1

Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey

被引用次数:9

[Submitted on 25 Mar 2023 (v1), last revised 27 Apr 2023 (this version, v2)]

本文的主要内容是关于Spatio-Temporal Graph Neural Networks(STGNN)在城市计算中的预测学习应用。文章介绍了STGNN技术的基本原理、应用场景、算法模型和实验结果,并探讨了STGNN在城市交通、气象预测、社交网络等领域的应用前景。

STGNN应用于城市计算

【论文笔记】最近看的时空数据挖掘综述整理8.27,论文笔记,人工智能,机器学习,论文阅读,数据挖掘,人工智能

STGNN基本原理

将图神经网络(GNNs)和各种时间学习方法相结合,以提取复杂的时空依赖关系。具体来说,STGNN通过构建时空数据,将空间信息和时间信息相结合,然后使用GNNs对空间信息进行建模,使用时间学习方法对时间信息进行建模,最后将两者结合起来,以实现对复杂时空依赖关系的建模和预测。
【论文笔记】最近看的时空数据挖掘综述整理8.27,论文笔记,人工智能,机器学习,论文阅读,数据挖掘,人工智能

基本架构
  • GNN
    • Spectral Graph Convolutional Network
    • Spatial Graph Convolutional Network
    • Graph Attention Network
  • Recurrent Neural Networks
    • Long-Short Term Memory Network
    • Gated Recurrent Unit Network
  • Temporal Convolutional Netowrks
    • Gated Temporal Convolutional Network
    • Causal Temporal Convolutional Network
  • Temporal Self-Attention Networks
  • Spatio-Temporal Fusion Neural Architecture
    • Factorized Neural Architecture
    • Coupled Neural Architecture

【论文笔记】最近看的时空数据挖掘综述整理8.27,论文笔记,人工智能,机器学习,论文阅读,数据挖掘,人工智能文章来源地址https://www.toymoban.com/news/detail-676583.html

应用场景
  • 交通方面
    • 交通需求预测
    • 交通意外预测
    • 交通用时预测
    • 交通轨迹预测
  • 环境方面
    • 空气质量预测
    • 气候预测
  • 公共安全方面
    • 犯罪频率预测
    • 灾难方位预测
  • 公共健康方面
    • 传染病预测
    • 救护车需求预测
  • 其他应用领域:能源、经济、金融、生产
STGNN变体
  • 空间学习方法
    • Multi-Graph Convolution
    • Adaptive Graph Learning
    • Muti-Scale Spatial Learning
    • Heterogeneous spatial learning
  • 时间学习方法
    • Multi-Scale Temporal Learning
    • Multi-Granularity Temporal Learning
    • Decomposition Temporal Learning
  • 时空融合方法
    • Spatio-Temporal Joint Modeling
    • Automated Spatio-Temporal Fusion
先进学习框架
  • Adversarial Learning
  • Meta Learning
  • Self-Supervised Learning
  • Continuous Spatio-Temporal modeling
  • Physics-Informed Learning
  • Transfer Learning

到了这里,关于【论文笔记】最近看的时空数据挖掘综述整理8.27的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据挖掘笔记1

    课程:清华大学-数据挖掘:理论与算法(国家级精品课)_哔哩哔哩_bilibili 数据是最底层的一种表现形式。 数据具有连续性。 从存储上来讲,数据分为逻辑上的和物理层的。 大数据:数据量大、产生速度快、数据种类多、    聚类:把一堆数据分为一组一组的(没有标签)

    2024年01月24日
    浏览(34)
  • 数据挖掘导论学习笔记1(第1 、2章)

    参考:https://blog.csdn.net/u013232035/article/details/48281659?spm=1001.2014.3001.5506 和《数据挖掘导论》学习笔记(第1-2章)_时机性样本_schdut的博客-CSDN博客  数据挖掘 是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。 数据分析技术的应用: 商务 :借助POS(销售

    2024年02月10日
    浏览(39)
  • 基于数据挖掘技术的手机消费行为分析的研究与实现(论文+源码)_jsp_236

    摘要 本文首先研究并介绍国内外目前的背景和现状,在此基础上给出论文的主要研究内容,其次,对数据挖掘技术手机消费行为系统的需求进行了分析。再次,对数据挖掘技术手机消费行为系统进行了总体设计,根据其总体设计、软件架构和总体功能模块进行了详细设计,作

    2024年02月04日
    浏览(46)
  • 《天池精准医疗大赛-人工智能辅助糖尿病遗传风险预测》模型复现和数据挖掘-论文_企业

    进入21世纪,生命科学特别是基因科技已经广泛而且深刻影响到每个人的健康生活,于此同时,科学家们借助基因科技史无前例的用一种全新的视角解读生命和探究疾病本质。人工智能(AI)能够处理分析海量医疗健康数据,通过认知分析获取洞察,服务于政府、健康医疗机构

    2023年04月09日
    浏览(62)
  • 《斯坦福数据挖掘教程·第三版》读书笔记(英文版)Chapter 11 Dimensionality Reduction

    来源:《斯坦福数据挖掘教程·第三版》对应的公开英文书和PPT Let M be a square matrix. Let λ be a constant and e a nonzero column vector with the same number of rows as M . Then λ is an eigenvalue of M and e is the corresponding eigenvector of M if M e = λ e Me = λe M e = λ e . Start with any unit vector v of the appropriate lengt

    2024年02月07日
    浏览(48)
  • 《斯坦福数据挖掘教程·第三版》读书笔记(英文版) Chapter 6 Frequent Itemsets

    来源:《斯坦福数据挖掘教程·第三版》对应的公开英文书和PPT The market-basket model of data is used to describe a common form of many-many relationship between two kinds of objects. On the one hand, we have items , and on the other we have baskets, sometimes called “ transactions .” Each basket consists of a set of items (an items

    2024年02月06日
    浏览(56)
  • 《斯坦福数据挖掘教程·第三版》读书笔记(英文版)Chapter 12 Large-Scale Machine Learning

    来源:《斯坦福数据挖掘教程·第三版》对应的公开英文书和PPT Algorithms called “machine learning” not only summarize our data; they are perceived as learning a model or classifier from the data, and thus discover something about data that will be seen in the future. The term unsupervised refers to the fact that the input data does

    2024年02月10日
    浏览(53)
  • 《斯坦福数据挖掘教程·第三版》读书笔记(英文版) Chapter 2 MapReduce and the New Software Stack

    来源:《斯坦福数据挖掘教程·第三版》对应的公开英文书和PPT Computing cluster means large collections of commodity hardware, including conventional processors (“ compute nodes ”) connected by Ethernet cables or inexpensive switches . The software stack begins with a new form of file system, called a “ distributed file system ,”

    2024年02月04日
    浏览(49)
  • 【数据挖掘算法与应用】——数据挖掘导论

    数据挖掘技术背景 大数据如何改变我们的生活 1.数据爆炸但知识贫乏   人们积累的数据越来越多。但是,目前这些数据还仅仅应用在数据的录入、查询、统计等功能,无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势,导致了“数据爆炸但知识

    2023年04月09日
    浏览(62)
  • 关联规则挖掘(上):数据分析 | 数据挖掘 | 十大算法之一

    ⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者: 秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。 🐴欢迎小伙伴们 点赞👍🏻、收藏

    2024年02月07日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包