运用谱分解定理反求实对称矩阵

这篇具有很好参考价值的文章主要介绍了运用谱分解定理反求实对称矩阵。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

谱分解定理

设三阶实对称矩阵 A A A,若矩阵 A A A 的特征值为 λ 1 , λ 2 , λ 3 \lambda_1,\lambda_2,\lambda_3 λ1,λ2,λ3,对应的单位化特征向量分别为 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3两两正交,则 A = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T A = \lambda_1 \alpha_1 \alpha_1^{\mathrm{T}} + \lambda_2 \alpha_2 \alpha_2^{\mathrm{T}} + \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} A=λ1α1α1T+λ2α2α2T+λ3α3α3T

【注 1】在考研范围内,只适用于实对称矩阵。
【注 2】特征向量必须两两正交且单位化!

证明:三阶实对称矩阵 A A A 可相似对角化,存在正交矩阵 Q = ( α 1 , α 2 , α 3 ) Q=(\alpha_1,\alpha_2,\alpha_3) Q=(α1,α2,α3),使得 Q T A Q = Λ = [ λ 1 λ 2 λ 3 ] Q^{\mathrm{T}}AQ = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} QTAQ=Λ= λ1λ2λ3

所以有: A = ( α 1 , α 2 , α 3 ) [ λ 1 λ 2 λ 3 ] [ α 1 T α 2 T α 3 T ] = λ 1 α 1 α 1 T + λ 2 α 2 α 2 T + λ 3 α 3 α 3 T A = (\alpha_1,\alpha_2,\alpha_3) \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{bmatrix} \begin{bmatrix} \alpha_1^{\mathrm{T}} \\ \alpha_2^{\mathrm{T}} \\ \alpha_3^{\mathrm{T}} \end{bmatrix} = \lambda_1 \alpha_1 \alpha_1^{\mathrm{T}} + \lambda_2 \alpha_2 \alpha_2^{\mathrm{T}} + \lambda_3 \alpha_3 \alpha_3^{\mathrm{T}} A=(α1,α2,α3) λ1λ2λ3 α1Tα2Tα3T =λ1α1α1T+λ2α2α2T+λ3α3α3T

定理的运用

什么时候运用谱分解定理最方便?

(1)当特征值出现 0 0 0 时,运用定理可减少计算量(参见解法一);

(2)当特征值出现二重根 k k k 时,可先运用定理计算出具体的 A − k E A-kE AkE,再算出实对称矩阵 A A A(参见解法二);

(3)运用该定理甚至不需要求出所有的特征向量!

【例】设 3 3 3 阶实对称矩阵 A A A 的秩为 2 2 2 λ 1 = λ 2 = 6 \lambda_1=\lambda_2=6 λ1=λ2=6 A A A 的二重特征值,若 α 1 = ( 1 , 1 , 0 ) T , α 2 = ( 2 , 1 , 1 ) T , α 3 = ( − 1 , 2 , − 3 ) T \alpha_1=(1,1,0)^{\mathrm{T}},\alpha_2=(2,1,1)^{\mathrm{T}},\alpha_3=(-1,2,-3)^{\mathrm{T}} α1=(1,1,0)T,α2=(2,1,1)T,α3=(1,2,3)T,都是 A A A 属于特征值 6 6 6 的特征向量,求矩阵 A A A

【解法一】由 r ( A ) = 2 r(A)=2 r(A)=2 可得特征值 λ 1 = λ 2 = 6 , λ 3 = 0 \lambda_1=\lambda_2=6, \lambda_3=0 λ1=λ2=6,λ3=0,将 α 1 = ( 1 , 1 , 0 ) T , α 2 = ( 2 , 1 , 1 ) T \alpha_1=(1,1,0)^{\mathrm{T}},\alpha_2=(2,1,1)^{\mathrm{T}} α1=(1,1,0)T,α2=(2,1,1)T 进行单位正交化得: ξ 1 = 1 2 ( 1 , 1 , 0 ) T , ξ 2 = 1 6 ( 1 , − 1 , 2 ) T \xi_1 = \frac{1}{\sqrt{2}} (1,1,0)^{\mathrm{T}},\xi_2 = \frac{1}{\sqrt{6}}(1,-1,2)^{\mathrm{T}} ξ1=2 1(1,1,0)T,ξ2=6 1(1,1,2)T

运用谱分解定理:

A = λ 1 ξ 1 ξ 1 T + λ 2 ξ 2 ξ 2 T = 3 ξ 1 ξ 1 T + ξ 2 ξ 2 T = 3 [ 1 1 0 ] ( 1 , 1 , 0 ) + [ 1 − 1 2 ] ( 1 , − 1 , 2 ) = [ 4 2 2 2 4 − 2 2 − 2 4 ] \begin{aligned} A &= \lambda_1 \xi_1 \xi_1^{\mathrm{T}} + \lambda_2 \xi_2 \xi_2^{\mathrm{T}} \\ &= 3 \xi_1 \xi_1^{\mathrm{T}} + \xi_2 \xi_2^{\mathrm{T}} \\ &= 3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} (1,1,0) + \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} (1,-1,2) \\ &= \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{bmatrix} \end{aligned} A=λ1ξ1ξ1T+λ2ξ2ξ2T=3ξ1ξ1T+ξ2ξ2T=3 110 (1,1,0)+ 112 (1,1,2)= 422242224

【解法二】先求出 A A A 的另一特征值和对应的特征向量 λ 3 = 0 , α 3 = ( − 1 , 1 , 1 ) T \lambda_3=0,\alpha_3=(-1,1,1)^{\mathrm{T}} λ3=0,α3=(1,1,1)T,进行单位正交化: ξ 3 = 1 3 ( − 1 , 1 , 1 ) T \xi_3=\frac{1}{\sqrt{3}}(-1,1,1)^{\mathrm{T}} ξ3=3 1(1,1,1)T

由于 A A A 的特征值为 λ 1 = λ 2 = 6 , λ 3 = 0 \lambda_1=\lambda_2=6, \lambda_3=0 λ1=λ2=6,λ3=0,所以 A − 6 E A-6E A6E 的特征值为 λ 1 = λ 2 = 0 , λ 3 = − 6 \lambda_1=\lambda_2=0, \lambda_3=-6 λ1=λ2=0,λ3=6,注意到其对应的特征向量仍然不变,因此可以先求出 A − 6 E A-6E A6E,运用谱分解定理:

A − 6 E = λ 3 ξ 3 ξ 3 T = − 2 [ − 1 1 1 ] ( − 1 , 1 , 1 ) = [ − 2 2 2 2 − 2 − 2 2 − 2 − 2 ] \begin{aligned} A-6E &= \lambda_3 \xi_3 \xi_3^{\mathrm{T}} \\ &= -2 \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} (-1,1,1) \\ &= \begin{bmatrix} -2 & 2 & 2 \\ 2 & -2 & -2 \\ 2 & -2 & -2 \end{bmatrix} \end{aligned} A6E=λ3ξ3ξ3T=2 111 (1,1,1)= 222222222

所以有:

A = ( A − 6 E ) + 6 E = [ − 2 2 2 2 − 2 − 2 2 − 2 − 2 ] + [ 6 6 6 ] = [ 4 2 2 2 4 − 2 2 − 2 4 ] \begin{aligned} A &= (A-6E) + 6E \\ &= \begin{bmatrix} -2 & 2 & 2 \\ 2 & -2 & -2 \\ 2 & -2 & -2 \end{bmatrix} + \begin{bmatrix} 6 & & \\ & 6 & \\ & & 6 \end{bmatrix} \\ &= \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{bmatrix} \end{aligned} A=(A6E)+6E= 222222222 + 666 = 422242224 文章来源地址https://www.toymoban.com/news/detail-676622.html

到了这里,关于运用谱分解定理反求实对称矩阵的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 高等数学:矩阵的酉不变范数,樊畿控制定理,次可乘性质,p次对称度规函数

    设 ∥ ⋅ ∥ : C m × n → R + lVertcdotrVert : mathbb{C}^{mtimes n} to mathbb{R}_+ ∥ ⋅ ∥ : C m × n → R + ​ 是范数,且 ∥ ★ ∥ = ∥ U ∗ ★ V ∥ lVert bigstar rVert = lVert U^{*} bigstar V rVert ∥ ★ ∥ = ∥ U ∗ ★ V ∥ 对所有酉矩阵 U , V U,V U , V 成立(此时称 ∥ ⋅ ∥ lVertcdotrVert ∥ ⋅

    2024年02月11日
    浏览(39)
  • 陶哲轩必备助手之人工智能数学验证+定理发明工具LEAN4 [线性代数篇2]矩阵乘积的行列式变形(下篇)

    视频链接,求个赞哦: 陶哲轩必备助手之人工智能数学验证+定理发明工具LEAN4 [线性代数篇2]矩阵乘积的行列式变形(下篇)_哔哩哔哩_bilibili import Mathlib.LinearAlgebra.Matrix.Determinant import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Data.Real.Sqrt import Mathlib.Data.Li

    2024年01月23日
    浏览(51)
  • 陶哲轩必备助手之人工智能数学验证+定理发明工具LEAN4 [线性代数篇2]矩阵乘积的行列式变形(上篇)

    视频链接: 陶哲轩必备助手之人工智能数学验证+定理发明工具LEAN4 [线性代数篇2]矩阵乘积的行列式变形(上篇)_哔哩哔哩_bilibili import Mathlib.LinearAlgebra.Matrix.Determinant import Mathlib.GroupTheory.Perm.Fin import Mathlib.GroupTheory.Perm.Sign import Mathlib.Data.Real.Sqrt import Mathlib.Data.List.Perm -- 本文

    2024年02月03日
    浏览(44)
  • 线性代数_对称矩阵

    对称矩阵是线性代数中一种非常重要的矩阵结构,它具有许多独特的性质和应用。下面是对称矩阵的详细描述: ### 定义 对称矩阵,即对称方阵,是指一个n阶方阵A,其转置矩阵等于其本身,即A^T = A。这意味着方阵A中的元素满足交换律,即对于任意的i和j(i ≤ j),都有A[

    2024年02月02日
    浏览(47)
  • 【考研数学二】线性代数重点笔记

    目录 第一章 行列式 1.1 行列式的几何意义 1.2 什么是线性相关,线性无关 1.3 行列式几何意义 1.4 行列式求和 1.5 行列式其他性质 1.6 余子式 1.7 对角线行列式 1.8 分块行列式 1.9 范德蒙德行列式 1.10 爪形行列式的计算 第二章 矩阵 2.1 初识矩阵 2.1.1 矩阵的概念 1.1.2 矩阵的运算规

    2024年04月10日
    浏览(45)
  • 线性代数矩阵秩的8大性质、重要定理以及关系

             

    2024年02月11日
    浏览(48)
  • 对称矩阵的三对角分解(Lanzos分解算法)-MINRES算法预热

    这篇博客看完以后接着看下一篇博客添加链接描述专门介绍MINRES算法实现就容易了 首先介绍Lanczos分解,Lanzos把对称矩阵转换为一个三对角对称矩阵。考虑三对角对称矩阵如下,考虑正交分解 T = Q T A Q T = Q^T A Q T = Q T A Q T = ( α 1 β 1 0 ⋯ 0 0 β 1 α 2 β 2 0 ⋯ 0 0 β 2 α 3 β 3 ⋯ 0

    2024年02月03日
    浏览(247)
  • AA@复数系和实数系多项式因式分解@代数学基本定理

    在一般数域上的结论在特殊数域:复数域和实数域上可以进一步具体化 对于复数域,有重要定理:代数基本代数基本定理 代数基本定理 复系数多项式 f ( x ) f(x) f ( x ) ,( ∂ ( f ( x ) ) ⩾ 1 partial(f(x))geqslant{1} ∂ ( f ( x )) ⩾ 1 )在复数域中有一根 定理的证明较为复杂,此处略去 结合根

    2024年02月16日
    浏览(38)
  • 线性代数中的矩阵分解与稀疏处理

    线性代数是计算机科学、数学、物理等多个领域的基础知识之一,其中矩阵分解和稀疏处理是线性代数中非常重要的两个方面。矩阵分解是指将一个矩阵分解为多个较小的矩阵的过程,这有助于我们更好地理解和解决问题。稀疏处理是指处理那些主要由零组成的矩阵的方法,

    2024年04月15日
    浏览(48)
  • 线性代数笔记4--矩阵A的LU分解

    1. 矩阵的转置 1.1 定义 矩阵的转置,即矩阵的行列进行互换。 A = [ 1 2 3 4 5 6 ] A= begin{bmatrix} 1 2 3 \\\\ 4 5 6\\\\ end{bmatrix} A = [ 1 4 ​ 2 5 ​ 3 6 ​ ] 矩阵 A A A 的转置 B = A ⊤ = [ 1 4 2 5 3 6 ] B=A^top= begin{bmatrix} 1 4\\\\ 2 5\\\\ 3 6 end{bmatrix} B = A ⊤ = ​ 1 2 3 ​ 4 5 6 ​ ​ 1.2 性质 ( A ⊤ ) ⊤ = A

    2024年04月13日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包