opencv-答题卡识别判卷

这篇具有很好参考价值的文章主要介绍了opencv-答题卡识别判卷。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

#导入工具包
import numpy as np
import argparse
import imutils
import cv2

# 设置参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
	help="path to the input image")
args = vars(ap.parse_args())

# 正确答案
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}

def order_points(pts):
	# 一共4个坐标点
	rect = np.zeros((4, 2), dtype = "float32")

	# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
	# 计算左上,右下
	s = pts.sum(axis = 1)
	rect[0] = pts[np.argmin(s)]
	rect[2] = pts[np.argmax(s)]

	# 计算右上和左下
	diff = np.diff(pts, axis = 1)
	rect[1] = pts[np.argmin(diff)]
	rect[3] = pts[np.argmax(diff)]

	return rect

def four_point_transform(image, pts):
	# 获取输入坐标点
	rect = order_points(pts)
	(tl, tr, br, bl) = rect

	# 计算输入的w和h值
	widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
	widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[

文章来源地址https://www.toymoban.com/news/detail-676942.html

到了这里,关于opencv-答题卡识别判卷的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • opencv-python基于计算机视觉的答题卡识别及判分系统ocr

    python  django  mysql 基于计算机视觉的答题卡识别及判分系统设计与实现 通过查阅资料和文献在充分掌握OpenCV图像处理开源框架,采用Python开发语言、实现简单答题卡识别系统,其基本功能包括:1,对答题卡进行图像处理;2,识别答题卡的选择题选项;3,将选择题所选答案与

    2024年02月20日
    浏览(57)
  • 基于Python+OpenCV智能答题卡识别系统——深度学习和图像识别算法应用(含Python全部工程源码)+训练与测试数据集

    本项目基于Python和OpenCV图像处理库,在Windows平台下开发了一个答题卡识别系统。系统运用精巧的计算机视觉算法,实现了批量识别答题卡并将信息导出至Excel表格的功能。这一解决方案使得答题卡的判卷过程变得轻便、高效且准确。 首先,我们以Python语言作为开发基础,结合

    2024年02月10日
    浏览(55)
  • 用Python实现答题卡识别!

    答题卡素材图片: 思路 1.读入图片,做一些预处理工作。 2.进行轮廓检测,然后找到该图片最大的轮廓,就是答题卡部分。 3.进行透视变换,以去除除答题卡外的多余部分,并且可以对答题卡进行校正。 4.再次检测轮廓,定位每个选项。 5.对选项圆圈先按照竖坐标排序,再按

    2024年02月07日
    浏览(40)
  • MATLAB实现OCR自动阅卷,识别答题卡进行成绩统计

    利用MATLAB进行答题卡识别编程设计,最主要的是实现了将答题卡中被填涂的答案提取出来,然后与标准的答案进行比对。通过相关的算法,算出考生填涂正确的题数,并统计计算后的得分。 每种答题卡都有很明显的助识别标记,像下图中的这种,最右边的一竖溜小横杠是帮助

    2023年04月26日
    浏览(40)
  • [Day 4 of 17]opencv扫描文稿并应用于考试测试答题卡

    https://pyimagesearch.com/2016/10/03/bubble-sheet-multiple-choice-scanner-and-test-grader-using-omr-python-and-opencv/?utm_source=Driputm_medium=Emailutm_campaign=CVandDLCrashCourseutm_content=email4 Bubble sheet multiple choice scanner and test grader using OMR, Python, and OpenCV 数据集至关重要,允许训练一个模型来准确识别和评分,对自

    2024年02月11日
    浏览(42)
  • 基于python的计算机视觉的答题卡识别及判分系统设计与实现

    摘 要 相比传统的纸质阅卷模式,答题卡的出现帮助教师缓解了试卷批阅的压力,答题卡配合光标阅读机的阅卷模式也逐渐普及应用,然而光标阅读机购买及维护费用较高不利于普通学校的使用。随着计算机视觉研究的不断发展,答题卡识别也成为了计算机视觉研究的重要内

    2024年02月10日
    浏览(47)
  • uniapp实现微信小程序/H5答题卡

    最近项目中使用到很多答题卡,实现了一个可以复用的答题卡组件。 项目使用 HbuilderX , uniapp,uview 进行开发。 代码中有些地方判断写的没必要,懒得改了,xdm看不惯自己改吧 hhhhhhh ^_^。 HTML代码: 微信小程序页面,如果要修改为H5,直接把view标签修改为div, 并把 :style=\\\"

    2024年02月03日
    浏览(48)
  • 人工智能-OpenCV+Python实现人脸识别(人脸检测)

    在OpenCV中使用Haar特征检测人脸,那么需要使用OpenCV提供的xml文件(级联表)在haarcascades目录下。这张级联表有一个训练好的AdaBoost训练集。首先要采用样本的Haar特征训练分类器,从而得到一个级联的AdaBoost分类器。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征

    2024年02月06日
    浏览(98)
  • ocr、人工智能、文字识别接口

    人工智能这个词近几年热度颇高,工业上有人称之为“机器代工”,生活中有人称之为“物联网”,而所体现出来的就是智能化,减少人工参与。翔云公有云平台应运而生,提供的OCR API及实名认证API使产品智能化,自动进行图片文字识别及身份证、手机号、银行卡、发票等信

    2024年04月26日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包