[足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】

这篇具有很好参考价值的文章主要介绍了[足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文仅供学习使用
本文参考:
《机构运动微分几何学分析与综合》-王德伦、汪伟
《微分几何》吴大任


连杆机构中的连杆与连架杆构成运动副,该运动副元素的特征点特征线机架坐标系中的运动轨迹曲线或曲面称为约束曲线约束曲面,是联系刚体运动与机构运动综合的桥梁,其几何性质是机构运动综合的理论基础,既是曲线与曲面的几何学研究内容,也是连杆机构运动几何学分析与综合的课题。然而,研究曲线与曲面的几何学,微分几何学方法无疑是自然而然的选择,将其与机构运动学结合,形成以点与线的运动方式研究约束曲线与曲面几何性质,为机构运动几何学分析与综合提供理论依据。
为方便阅读后续内容,在第3.1和第3.2节简单概述微分几何学基本知识;采用微分几何量方法研究连杆机构中典型而又重要的约束曲线与约束曲面,称为空间约束曲线与约束曲面微分几何学

3.1 空间曲线微分几何学概述

3.1.1 矢量表示

在直角坐标中表达一条空间曲线 Γ \Gamma Γ时,有:
{ x = x ( t ) y = y ( t ) z = z ( t ) \left\{ \begin{matrix} x=x(t) \\ y=y(t) \\ z=z(t) \\ \end{matrix} \right. x=x(t)y=y(t)z=z(t)
式中, t t t为曲线的参数,若置换自变量或者消去参数 t t t,则可写成:
{ y = y ( x ) z = z ( x ) \left\{ \begin{matrix} y=y(x) \\ z=z(x) \\ \end{matrix} \right. {y=y(x)z=z(x)
或者写成隐函数形式:
{ F 1 ( x , y , z ) = 0 F 2 ( x , y , z ) = 0 \left\{ \begin{matrix} {{F}_{1}}(x,y,z)=0 \\ {{F}_{2}}(x,y,z)=0 \\ \end{matrix} \right. {F1(x,y,z)=0F2(x,y,z)=0
若将上述 x , y , z x,y,z x,y,z置于空间固定坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中,则曲线 Γ \Gamma Γ以参数 t t t表示的矢量方程为:
Γ : R = x ( t ) i + y ( t ) j + z ( t ) k \Gamma :R=x(t)i+y(t)j+z(t)k Γ:R=x(t)i+y(t)j+z(t)k
可以将其简化为:
R = R ( t ) R=R(t) R=R(t)
式(3.4)式(3.5)为空间曲线 Γ \Gamma Γ的矢量表达式, t t t为曲线 Γ \Gamma Γ的一般参数。在 第1章平面曲线的微分几何学 中引入了圆矢量函数用来描述曲线的矢量方程,使得形式简洁并便于计算。因此对于空间曲线 Γ \Gamma Γ的矢量方程式(3.4),可以选择任意两个坐标轴上的分量用圆矢量函数进行描述。例如,将曲线 Γ \Gamma Γ上任意点的矢径在坐标平面 O − i j O-ij Oij上的投影矢量用圆矢量函数描述,如下图所示。
[足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】,机构学,运动几何学

则其矢量方程可以写出另一种形式:
Γ : R = r ( φ ) e I ( φ ) + z ( φ ) k \Gamma :R=r(\varphi ){{e}_{I(\varphi )}}+z(\varphi )k Γ:R=r(φ)eI(φ)+z(φ)k
对于空间曲线 Γ \Gamma Γ,弧长参数 s s s为其自然参数,且与一般参数 t t t的关系为:
s = ∫ t a t b ∣ d R d t ∣ d t , d s = ∣ d R ∣ = ( d x d t ) 2 + ( d y d t ) 2 + ( d z d t ) 2 d t s=\int_{{{t}_{a}}}^{{{t}_{b}}}{\left| \frac{dR}{dt} \right|dt,ds=\left| dR \right|}=\sqrt{{{(\frac{dx}{dt})}^{2}}+{{(\frac{dy}{dt})}^{2}}+{{(\frac{dz}{dt})}^{2}}}dt s=tatb dtdR dt,ds=dR=(dtdx)2+(dtdy)2+(dtdz)2 dt

空间曲线 Γ \Gamma Γ的矢量方程用弧长参数 s s s表示为: Γ : R = R ( s ) , s a ≤ s ≤ s b \Gamma :R=R(s),{{s}_{a}}\le s\le {{s}_{b}} Γ:R=R(s),sassb

:书中为 Γ : R = R ( s ) , s a ≤ a ≤ s b \Gamma :R=R(s),{{s}_{a}}\le a\le {{s}_{b}} Γ:R=R(s),saasb

【例3-1】 球面曲线如下图所示:
[足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】,机构学,运动几何学
对于球面曲线 Γ \Gamma Γ,习惯于将直角坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}原点置于球心,则用直角坐标表示为:
{ x = x ( t ) , y = y ( t ) , z = z ( t ) x 2 + y 2 + z 2 = R 2 \left\{ \begin{matrix} x=x(t),y=y(t),z=z(t) \\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{R}^{2}} \\ \end{matrix} \right. {x=x(t),y=y(t),z=z(t)x2+y2+z2=R2
式中, R R R为球面半径, t t t为球面曲线的参数,若置换自变量或者消去参数 t t t,可写成:
{ z = z ( x , y ) x 2 + y 2 + z 2 = R 2 \left\{ \begin{matrix} z=z(x,y) \\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{R}^{2}} \\ \end{matrix} \right. {z=z(x,y)x2+y2+z2=R2
由于球面曲线上的点始终分布在一球面上,因此往往用球面坐标表示曲线为:
δ = δ ( t ) , φ = φ ( t ) , r = R \delta =\delta (t),\varphi =\varphi (t),r=R δ=δ(t),φ=φ(t),r=R
式中, δ \delta δ是由原点0到曲线上点 P P P的有向线段 O P OP OP k k k的夹角; φ \varphi φ O P OP OP O − i j O-ij Oij面上的投影与i的夹角, δ \delta δ φ \varphi φ的取值范围分别为 [ 0 , π ] [0,\pi ] [0,π] [ 0 , 2 π ] [0,2\pi ] [0,2π]。点 P P P在坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中的球面坐标与直角坐标之间具有如下转换关系
x = R sin ⁡ δ cos ⁡ φ , y = R sin ⁡ δ sin ⁡ φ , z = R cos ⁡ δ x=R\sin \delta \cos \varphi ,y=R\sin \delta \sin \varphi ,z=R\cos \delta x=Rsinδcosφ,y=Rsinδsinφ,z=Rcosδ
将上述 x , y , z x,y,z x,y,z置于坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中,则球面曲线以参数 t t t表示的矢量方程为:
Γ : R = R ( t ) = x ( t ) i + y ( t ) j + z ( t ) k \Gamma :R=R(t)=x(t)i+y(t)j+z(t)k Γ:R=R(t)=x(t)i+y(t)j+z(t)k
若通过圆矢量函数表示球面曲线的矢量方程,则为:
R = R sin ⁡ δ ( φ ) e I ( φ ) + R cos ⁡ δ ( φ ) k R=R\sin \delta (\varphi ){{e}_{I(\varphi )}}+R\cos \delta (\varphi )k R=Rsinδ(φ)eI(φ)+Rcosδ(φ)k
比较式(E3-1.1)、式(E3-1.4)与式(E3-1.6)可知,采用矢量表示的球面曲线比其他方式表达要简单的多。

【例3-2】 圆柱面曲线如下图所示:
[足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】,机构学,运动几何学
圆柱面曲线在直角坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中的方程为:
{ x = r 0 cos ⁡ φ y = r 0 sin ⁡ φ z = z ( φ ) \left\{ \begin{matrix} x={{r}_{0}}\cos \varphi \\ y={{r}_{0}}\sin \varphi \\ z=z(\varphi ) \\ \end{matrix} \right. x=r0cosφy=r0sinφz=z(φ)
式中, r 0 {{r}_{0}} r0为圆柱面半径。若通过圆矢量函数表示圆柱面曲线的矢量方程,则为:
R = r 0 e I ( φ ) + z ( φ ) k R={{r}_{0}}{{e}_{I(\varphi )}}+z(\varphi )k R=r0eI(φ)+z(φ)k

3.1.2 Frenet标架

空间曲线 Γ ⃗ : R ⃗ = R ⃗ ( s ) \vec{\varGamma}:\vec{R}=\vec{R}\left( s \right) Γ :R =R (s) 在任意点 P P P处有两个无限接近位置的点连线组成切线,其单位切矢 α ⃗ ( s ) = d R ⃗ ( s ) d s \vec{\alpha}\left( s \right) =\frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s} α (s)=dsdR (s)始终指向曲线弧长增加的方向,将切矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) 对弧长参数求导,可得:

d α ⃗ ( s ) d s = k ( s ) β ⃗ ( s ) \frac{\mathrm{d}\vec{\alpha}\left( s \right)}{\mathrm{d}s}=k\left( s \right) \vec{\beta}\left( s \right) dsdα (s)=k(s)β (s)

其中, k ( s ) k\left( s \right) k(s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的曲率,即三个无限接近位置点构成空间曲线在该点处的密切平面曲率是空间曲线在密切平面内的弯曲程度,体现了曲线的切矢的倾斜角对弧长参数的变化率。与平面曲线曲率不同,空间曲线的曲率非负 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的主法矢,指向了曲线在该点的曲率中心。当 k ( s ) ≠ 0 k\left( s \right) \ne 0 k(s)=0 时,其倒数 ρ ( s ) = 1 / k ( s ) \rho \left( s \right) =1/k\left( s \right) ρ(s)=1/k(s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 曲率半径,则曲线 Γ ⃗ \vec{\varGamma} Γ 曲率中心 C C C的矢量为:

R ⃗ C = R ⃗ P + ρ ⋅ β ⃗ \vec{R}_{\mathrm{C}}=\vec{R}_{\mathrm{P}}+\rho \cdot \vec{\beta} R C=R P+ρβ

由空间曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的切矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s)主法矢 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 可以构建矢量 γ ⃗ ( s ) = α ⃗ ( s ) × β ⃗ ( s ) \vec{\gamma}\left( s \right) =\vec{\alpha}\left( s \right) \times \vec{\beta}\left( s \right) γ (s)=α (s)×β (s) ,称之为曲线的副法矢,从而在空间曲线 Γ ⃗ \vec{\varGamma} Γ 上构造了单位右手系正交标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P PFrenet标架

[足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】,机构学,运动几何学
对于空间曲线 Γ ⃗ \vec{\varGamma} Γ P P P 点的Frenet标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,其中标矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 确定了密切平面 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) γ ⃗ ( s ) \vec{\gamma}\left( s \right) γ (s) 确定的平面称为法平面,而 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) γ ⃗ ( s ) \vec{\gamma}\left( s \right) γ (s) 确定的平面称为从切平面。可见Frenet标架由三个同空间曲线紧密联系的向量所组成,其微分运算公式为:

{ d R ⃗ ( s ) d s = α ⃗ ( s ) d α ⃗ ( s ) d s = k ( s ) β ⃗ ( s ) d β ⃗ ( s ) d s = − k ( s ) α ⃗ ( s ) + τ ( s ) γ ⃗ ( s ) d γ ⃗ ( s ) d s = − τ ( s ) β ⃗ ( s ) \begin{cases} \begin{array}{c} \frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s}=\vec{\alpha}\left( s \right)\\ \frac{\mathrm{d}\vec{\alpha}\left( s \right)}{\mathrm{d}s}=k\left( s \right) \vec{\beta}\left( s \right)\\ \end{array}\\ \begin{array}{c} \frac{\mathrm{d}\vec{\beta}\left( s \right)}{\mathrm{d}s}=-k\left( s \right) \vec{\alpha}\left( s \right) +\tau \left( s \right) \vec{\gamma}\left( s \right)\\ \frac{\mathrm{d}\vec{\gamma}\left( s \right)}{\mathrm{d}s}=-\tau \left( s \right) \vec{\beta}\left( s \right)\\ \end{array}\\ \end{cases} dsdR (s)=α (s)dsdα (s)=k(s)β (s)dsdβ (s)=k(s)α (s)+τ(s)γ (s)dsdγ (s)=τ(s)β (s)

其中, τ ( s ) \tau \left( s \right) τ(s) 称为空间曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的挠率,它衡量了曲线在点 $P$ 的(密切平面)副法矢 $\vec{\gamma}\left( s \right)$ 倾斜角对弧长的变化率,从而描述了曲线在该点偏离密切平面的程度。上式也称为空间曲线的Frenet公式

由Frenet公式可以得到空间曲线 Γ ⃗ \vec{\varGamma} Γ 曲率 k k k 和挠率 τ \tau τ 的表达式为:

k = ∣ d 2 R ⃗ ( s ) d s 2 ∣ , τ = ( d R ⃗ ( s ) d s , d 2 R ⃗ ( s ) d s 2 , d 3 R ⃗ ( s ) d s 3 ) / ∣ d 2 R ⃗ ( s ) d s 2 ∣ 2 k=\left| \frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2} \right|,\tau =\left( \frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s},\frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2},\frac{\mathrm{d}^3\vec{R}\left( s \right)}{\mathrm{d}s^3} \right) /\left| \frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2} \right|^2 k= ds2d2R (s) ,τ=(dsdR (s),ds2d2R (s),ds3d3R (s))/ ds2d2R (s) 2

若空间曲线 Γ ⃗ \vec{\varGamma} Γ 是以一般参数 t t t 进行描述的,则其曲率 k ( s ) k(s) k(s) 和挠率 τ ( s ) \tau \left( s \right) τ(s) 的表达式为:
k = ∣ d R ⃗ d t × d 2 R ⃗ d t 2 ∣ / ∣ d R ⃗ d t ∣ 3 , τ = ( d R ⃗ d t , d 2 R ⃗ d t 2 , d 3 R ⃗ d t 3 ) / ( d R ⃗ d t × d 2 R ⃗ d t 2 ) 2 k=\left| \frac{\mathrm{d}\vec{R}}{\mathrm{d}t}\times \frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2} \right|/\left| \frac{\mathrm{d}\vec{R}}{\mathrm{d}t} \right|^3,\tau =\left( \frac{\mathrm{d}\vec{R}}{\mathrm{d}t},\frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2},\frac{\mathrm{d}^3\vec{R}}{\mathrm{d}t^3} \right) /\left( \frac{\mathrm{d}\vec{R}}{\mathrm{d}t}\times \frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2} \right) ^2 k= dtdR ×dt2d2R / dtdR 3,τ=(dtdR ,dt2d2R ,dt3d3R )/(dtdR ×dt2d2R )2
对于空间曲线来说,曲率 k ( s ) k(s) k(s) 和挠率 τ ( s ) \tau \left( s \right) τ(s) 不依赖于坐标系的选定。是空间曲线的不变量,能够唯一地确定空间曲线,可以将 k = k ( s ) , τ = τ ( s ) k=k\left( s \right) ,\tau =\tau \left( s \right) k=k(s),τ=τ(s) 称为空间曲线的自然方程。于是有:

定理3.1:在区间 0 ⩽ s ⩽ l 0\leqslant s\leqslant l 0sl上任意给定连续可微函数 $k\left( s \right) >0 $ 和连续函数 τ ( s ) \tau \left( s \right) τ(s) 以及初始右手系正交标架 { R ⃗ 0 ; α ⃗ 0 , β ⃗ 0 , γ ⃗ 0 } \left\{ \vec{R}_0;\vec{\alpha}_0,\vec{\beta}_0,\vec{\gamma}_0 \right\} {R 0;α 0,β 0,γ 0} ,则一定有且仅有一条以 s s s 为弧长、以 k ( s ) k\left( s \right) k(s) 为曲率、 τ ( s ) \tau \left( s \right) τ(s) 为挠率的空间有向曲线。

建立了空间曲线 Γ ⃗ \vec{\varGamma} Γ P P P 点处的Frenet标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,可将曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P的邻域内按照泰勒公式展开。假定曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的弧长为 s s s,则有:

R ⃗ ( s + Δ s ) = R ⃗ ( s ) + d R ⃗ ( s ) d s Δ s + 1 2 ! d 2 R ⃗ ( s ) d s 2 ( Δ s ) 2 + ⋯ + 1 n ! d n R ⃗ ( s ) d s n ( Δ s ) n + ε n ( s , Δ s ) ( Δ s ) n \vec{R}\left( s+\varDelta s \right) =\vec{R}\left( s \right) +\frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s}\varDelta s+\frac{1}{2!}\frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2}\left( \varDelta s \right) ^2+\cdots +\frac{1}{n!}\frac{\mathrm{d}^n\vec{R}\left( s \right)}{\mathrm{d}s^n}\left( \varDelta s \right) ^n+\varepsilon _{\mathrm{n}}\left( s,\varDelta s \right) \left( \varDelta s \right) ^n R (s+Δs)=R (s)+dsdR (s)Δs+2!1ds2d2R (s)(Δs)2++n!1dsndnR (s)(Δs)n+εn(s,Δs)(Δs)n

式中, lim ⁡ Δ s → 0 ε n ( s , Δ s ) = 0 , d R ⃗ d s = α ⃗ , d 2 R ⃗ d s 2 = k β ⃗ , d 3 R ⃗ d s 3 = − k 2 α ⃗ + d k d s β ⃗ + k τ γ ⃗ \lim_{\varDelta s\rightarrow 0} \varepsilon _{\mathrm{n}}\left( s,\varDelta s \right) =0,\frac{\mathrm{d}\vec{R}}{\mathrm{d}s}=\vec{\alpha},\frac{\mathrm{d}^2\vec{R}}{\mathrm{d}s^2}=k\vec{\beta},\frac{\mathrm{d}^3\vec{R}}{\mathrm{d}s^3}=-k^2\vec{\alpha}+\frac{\mathrm{d}k}{\mathrm{d}s}\vec{\beta}+k\tau \vec{\gamma} limΔs0εn(s,Δs)=0,dsdR =α ,ds2d2R =kβ ,ds3d3R =k2α +dsdkβ +kτγ ,并以此可以得到矢径 R ⃗ ( s ) \vec{R}\left( s \right) R (s) 关于弧长参数的各阶导数。文章来源地址https://www.toymoban.com/news/detail-677088.html

到了这里,关于[足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-3(3) 刚体的位形 Configuration of Rigid Body

    本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。 2024年底本人学位论文发表后方可摘抄 若有帮助请引用 本文参考: . 食用方法 如何表达刚体在空

    2024年01月24日
    浏览(46)
  • [足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-3(1) 刚体的位形 Configuration of Rigid Body

    本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。 2024年底本人学位论文发表后方可摘抄 若有帮助请引用 本文参考: . 食用方法 如何表达刚体在空

    2024年01月17日
    浏览(100)
  • [足式机器人]Part3 变分法Ch01-1 数学预备知识——【读书笔记】

    本文仅供学习使用 本文参考: 《变分法基础-第三版》老大中 《变分学讲义》张恭庆 《Calculus of Variations of Optimal Control Theory》-变分法和最优控制论-Daneil Liberzon 1.1.1 一元函数的泰勒公式 泰勒中值定理/泰勒定理: 若函数 f ( x ) fleft( x right) f ( x ) 在点 x 0 x_0 x 0 ​ 的某个开区

    2024年02月12日
    浏览(47)
  • 【果树农药喷洒机器人】Part3:变量喷药系统工作原理介绍

    📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍 收藏 ⭐不迷路🙉 📢:内容若有错误,敬请留言 📝指正!原创文,转载请注明出处 果树喷药机器人通

    2024年02月13日
    浏览(36)
  • 干货 | 足式机器人运动控制发展方向——轨迹优化

    “ 运动控制技术的进步使得足式机器人的运动能力更强,而近来轨迹优化作为主流学术研究方向,能够为足式机器人运动控制的发展提供可能的指引。本期技术干货,我们邀请到了小米工程师 徐喆 ,向我们介绍足式机器人运动控制的发展方向——轨迹优化。 ” 一、前言 足

    2023年04月22日
    浏览(51)
  • [足式机器人]Part4 南科大高等机器人控制课 CH11 Bascis of Optimization

    本文仅供学习使用 本文参考: B站:CLEAR_LAB 笔者带更新-运动学 课程主讲教师: Prof. Wei Zhang 课程链接 : https://www.wzhanglab.site/teaching/mee-5114-advanced-control-for-robotics/ Optimization is argulably the most important tool for modern engineering Robotics: Differential Inverse Kinematics Dynamics : ABA (most efficient

    2024年02月04日
    浏览(65)
  • [足式机器人]Part4 南科大高等机器人控制课 CH12 Robotic Motion Control

    本文仅供学习使用 本文参考: B站:CLEAR_LAB 笔者带更新-运动学 课程主讲教师: Prof. Wei Zhang 课程链接 : https://www.wzhanglab.site/teaching/mee-5114-advanced-control-for-robotics/ 机器人—— 运动能力 、计算能力、感知决策能力 的机电系统 Steady-state error : e s s = lim ⁡ t → ∞ θ e ( t ) e_{m

    2024年02月03日
    浏览(46)
  • [足式机器人]Part4 南科大高等机器人控制课 CH10 Bascis of Stability Analysis

    本文仅供学习使用 本文参考: B站:CLEAR_LAB 笔者带更新-运动学 课程主讲教师: Prof. Wei Zhang This lecture introduces basic concepts and results on Lyapunov stability of nonlinear systems system asymptotic/ˌæsimp\\\'tɔtik,-kəl/ 渐进的 behavior (not too much about transient/\\\'trænzɪənt/短暂的 ) ability to return to the des

    2024年02月04日
    浏览(47)
  • [足式机器人]Part4 南科大高等机器人控制课 Ch09 Dynamics of Open Chains

    本文仅供学习使用 本文参考: B站:CLEAR_LAB 笔者带更新-运动学 课程主讲教师: Prof. Wei Zhang Recall Newton-Euler Equation for a single rigid body: F = d d t H = I A + V ~ ∗ I V mathcal{F} =frac{mathrm{d}}{mathrm{d}t}mathcal{H} =mathcal{I} mathcal{A} +tilde{mathcal{V}}^*mathcal{I} mathcal{V} F = d t d ​ H = I A + V

    2024年02月03日
    浏览(60)
  • [足式机器人]Part5 机械设计 Ch00/01 绪论+机器结构组成与连接 ——【课程笔记】

    本文仅供学习使用 本文参考: 《机械设计》 王德伦 马雅丽 课件与日常作业可登录网址 http://edu.bell-lab.com/manage/#/login ,选择观摩登录,查看 2023机械设计2 。 机械设计 Machines Design ,在传统课程中,更倾向于 机械零件设计 Machine Elements Design :预期 装置 (运动/结构)与 性能

    2024年02月12日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包