实战,实现幂等的8种方案!

这篇具有很好参考价值的文章主要介绍了实战,实现幂等的8种方案!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 什么是幂等?

幂等是一个数学与计算机科学概念。

  • 在数学中,幂等用函数表达式就是:f(x) = f(f(x))。比如求绝对值的函数,就是幂等的,abs(x) = abs(abs(x))

  • 计算机科学中,幂等表示一次和多次请求某一个资源应该具有同样的副作用,或者说,多次请求所产生的影响与一次请求执行的影响效果相同。

2. 为什么需要幂等

举个例子:

我们开发一个转账功能,假设我们调用下游接口超时了。一般情况下,超时可能是网络传输丢包的问题,也可能是请求时没送到,还有可能是请求到了,返回结果却丢了。这时候我们是否可以重试呢?如果重试的话,是否会多转了一笔钱呢?

幂等操作,java,java,大数据,分布式

转账超时

当前互联网的系统几乎都是解耦隔离后,会存在各个不同系统的相互远程调用。调用远程服务会有三个状态:成功,失败,或者超时。前两者都是明确的状态,而超时则是未知状态。我们转账超时的时候,如果下游转账系统做好幂等控制,我们发起重试,那即可以保证转账正常进行,又可以保证不会多转一笔

其实除了转账这个例子,日常开发中,还有很多很多例子需要考虑幂等。比如:

  • MQ(消息中间件)消费者读取消息时,有可能会读取到重复消息。(重复消费

  • 比如提交form表单时,如果快速点击提交按钮,可能产生了两条一样的数据(前端重复提交

3. 接口超时了,到底如何处理?

如果我们调用下游接口超时了,我们应该怎么处理呢?

两种方案处理:

  • 方案一:就是下游系统提供一个对应的查询接口。如果接口超时了,先查下对应的记录,如果查到是成功,就走成功流程,如果是失败,就按失败处理。

拿我们的转账例子来说,转账系统提供一个查询转账记录的接口,如果渠道系统调用转账系统超时时,渠道系统先去查询一下这笔记录,看下这笔转账记录成功还是失败,如果成功就走成功流程,失败再重试发起转账。

幂等操作,java,java,大数据,分布式

  • 方案二:下游接口支持幂等,上游系统如果调用超时,发起重试即可。

幂等操作,java,java,大数据,分布式

两种方案都是挺不错的,但是如果是MQ重复消费的场景,方案一处理并不是很妥,所以,我们还是要求下游系统对外接口支持幂等

幂等操作,java,java,大数据,分布式

4. 如何设计幂等

既然这么多场景需要考虑幂等,那我们如何设计幂等呢?

幂等意味着一条请求的唯一性。不管是你哪个方案去设计幂等,都需要一个全局唯一的ID,去标记这个请求是独一无二的。

  • 如果你是利用唯一索引控制幂等,那唯一索引是唯一的

  • 如果你是利用数据库主键控制幂等,那主键是唯一的

  • 如果你是悲观锁的方式,底层标记还是全局唯一的ID

4.1 全局的唯一性ID

全局唯一性ID,我们怎么去生成呢?你可以回想下,数据库主键Id怎么生成的呢?

是的,我们可以使用UUID,但是UUID的缺点比较明显,它字符串占用的空间比较大,生成的ID过于随机,可读性差,而且没有递增。

我们还可以使用雪花算法(Snowflake) 生成唯一性ID。

雪花算法是一种生成分布式全局唯一ID的算法,生成的ID称为Snowflake IDs。这种算法由Twitter创建,并用于推文的ID。

一个Snowflake ID有64位。

  • 第1位:Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。

  • 接下来前41位是时间戳,表示了自选定的时期以来的毫秒数。

  • 接下来的10位代表计算机ID,防止冲突。

  • 其余12位代表每台机器上生成ID的序列号,这允许在同一毫秒内创建多个Snowflake ID。

幂等操作,java,java,大数据,分布式

雪花算法

当然,全局唯一性的ID,还可以使用百度的Uidgenerator,或者美团的Leaf

4.2 幂等设计的基本流程

幂等处理的过程,说到底其实就是过滤一下已经收到的请求,当然,请求一定要有一个全局唯一的ID标记哈。然后,怎么判断请求是否之前收到过呢?把请求储存起来,收到请求时,先查下存储记录,记录存在就返回上次的结果,不存在就处理请求。

一般的幂等处理就是这样啦,如下:

幂等操作,java,java,大数据,分布式

5. 实现幂等的8种方案

幂等设计的基本流程都是类似的,我们简简单单来过一下幂等实现的8中方案哈

5.1 select+insert+主键/唯一索引冲突

日常开发中,为了实现交易接口幂等,我是这样实现的:

交易请求过来,我会先根据请求的唯一流水号 bizSeq字段,先select一下数据库的流水表

  • 如果数据已经存在,就拦截是重复请求,直接返回成功;

  • 如果数据不存在,就执行insert插入,如果insert成功,则直接返回成功,如果insert产生主键冲突异常,则捕获异常,接着直接返回成功。

流程图如下

幂等操作,java,java,大数据,分布式

伪代码如下:

/**
 * 幂等处理
 */
Rsp idempotent(Request req){
  Object requestRecord =selectByBizSeq(bizSeq);
  
  if(requestRecord !=null){
    //拦截是重复请求
     log.info("重复请求,直接返回成功,流水号:{}",bizSeq);
     return rsp;
  }
  
  try{
    insert(req);
  }catch(DuplicateKeyException e){
    //拦截是重复请求,直接返回成功
    log.info("主键冲突,是重复请求,直接返回成功,流水号:{}",bizSeq);
    return rsp;
  }
  
  //正常处理请求
  dealRequest(req);
  
  return rsp;
}

为什么前面已经select查询了,还需要try...catch...捕获重复异常呢?

是因为高并发场景下,两个请求去select的时候,可能都没查到,然后都走到insert的地方啦。

当然,用唯一索引代替数据库主键也是可以的哈,都是全局唯一的ID即可。

5.2. 直接insert + 主键/唯一索引冲突

在5.1方案中,都会先查一下流水表的交易请求,判断是否存在,然后不存在再插入请求记录。如果重复请求的概率比较低的话,我们可以直接插入请求,利用主键/唯一索引冲突,去判断是重复请求

流程图如下:

幂等操作,java,java,大数据,分布式

伪代码如下:

/**
 * 幂等处理
 */
Rsp idempotent(Request req){
  
  try{
    insert(req);
  }catch(DuplicateKeyException e){
     //拦截是重复请求,直接返回成功
    log.info("主键冲突,是重复请求,直接返回成功,流水号:{}",bizSeq);
    return rsp;
  }
  
  //正常处理请求
  dealRequest(req);
  return rsp;
}

温馨提示 :

大家别搞混哈,防重和幂等设计其实是有区别的。防重主要为了避免产生重复数据,把重复请求拦截下来即可。而幂等设计除了拦截已经处理的请求,还要求每次相同的请求都返回一样的效果。不过呢,很多时候,它们的处理流程可以是类似的。

5.3 状态机幂等

很多业务表,都是有状态的,比如转账流水表,就会有0-待处理,1-处理中、2-成功、3-失败状态。转账流水更新的时候,都会涉及流水状态更新,即涉及状态机 (即状态变更图)。我们可以利用状态机实现幂等,一起来看下它是怎么实现的。

比如转账成功后,把处理中的转账流水更新为成功状态,SQL这么写:

update transfr_flow set status=2 where biz_seq=‘666’ and status=1;

简要流程图如下:

幂等操作,java,java,大数据,分布式

伪代码实现如下:

Rsp idempotentTransfer(Request req){
   String bizSeq = req.getBizSeq();
   int rows= "update transfr_flow set status=2 where biz_seq=#{bizSeq} and status=1;"
   if(rows==1){
      log.info(“更新成功,可以处理该请求”);
      //其他业务逻辑处理
      return rsp;
   }else if(rows==0){
      log.info(“更新不成功,不处理该请求”);
      //不处理,直接返回
      return rsp;
   }
   
   log.warn("数据异常")
   return rsp:
}

状态机是怎么实现幂等的呢?

  • 第1次请求来时,bizSeq流水号是 666,该流水的状态是处理中,值是 1,要更新为2-成功的状态,所以该update语句可以正常更新数据,sql执行结果的影响行数是1,流水状态最后变成了2。

  • 第2请求也过来了,如果它的流水号还是 666,因为该流水状态已经2-成功的状态了,所以更新结果是0,不会再处理业务逻辑,接口直接返回。

5.4 抽取防重表

5.1和5.2的方案,都是建立在业务流水表上bizSeq的唯一性上。很多时候,我们业务表唯一流水号希望后端系统生成,又或者我们希望防重功能与业务表分隔开来,这时候我们可以单独搞个防重表。当然防重表也是利用主键/索引的唯一性,如果插入防重表冲突即直接返回成功,如果插入成功,即去处理请求。

5.5 token令牌

token 令牌方案一般包括两个请求阶段:

  1. 客户端请求申请获取token,服务端生成token返回

  2. 客户端带着token请求,服务端校验token

流程图如下:

幂等操作,java,java,大数据,分布式

  1. 客户端发起请求,申请获取token。

  2. 服务端生成全局唯一的token,保存到redis中(一般会设置一个过期时间),然后返回给客户端。

  3. 客户端带着token,发起请求。

  4. 服务端去redis确认token是否存在,一般用 redis.del(token)的方式,如果存在会删除成功,即处理业务逻辑,如果删除失败不处理业务逻辑,直接返回结果。

5.6 悲观锁(如select for update)

什么是悲观锁

通俗点讲就是很悲观,每次去操作数据时,都觉得别人中途会修改,所以每次在拿数据的时候都会上锁。官方点讲就是,共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程。

悲观锁如何控制幂等的呢?就是加锁呀,一般配合事务来实现。

举个更新订单的业务场景:

假设先查出订单,如果查到的是处理中状态,就处理完业务,再然后更新订单状态为完成。如果查到订单,并且是不是处理中的状态,则直接返回

整体的伪代码如下:

begin;  # 1.开始事务
select * from order where order_id='666' # 查询订单,判断状态
if(status !=处理中){
   //非处理中状态,直接返回;
   return ;
}
## 处理业务逻辑
update order set status='完成' where order_id='666' # 更新完成
commit; # 5.提交事务

这种场景是非原子操作的,在高并发环境下,可能会造成一个业务被执行两次的问题:

当一个请求A在执行中时,而另一个请求B也开始状态判断的操作。因为请求A还未来得及更改状态,所以请求B也能执行成功,这就导致一个业务被执行了两次。

可以使用数据库悲观锁(select ...for update)解决这个问题.

begin;  # 1.开始事务
select * from order where order_id='666' for update # 查询订单,判断状态,锁住这条记录
if(status !=处理中){
   //非处理中状态,直接返回;
   return ;
}
## 处理业务逻辑
update order set status='完成' where order_id='666' # 更新完成
commit; # 5.提交事务
  • 这里面order_id需要是索引主键哈,要锁住这条记录就好,如果不是索引或者主键,会锁表的!

  • 悲观锁在同一事务操作过程中,锁住了一行数据。别的请求过来只能等待,如果当前事务耗时比较长,就很影响接口性能。所以一般不建议用悲观锁做这个事情。

5.7 乐观锁

悲观锁有性能问题,可以试下乐观锁

什么是乐观锁

乐观锁在操作数据时,则非常乐观,认为别人不会同时在修改数据,因此乐观锁不会上锁。只是在执行更新的时候判断一下,在此期间别人是否修改了数据。

怎样实现乐观锁呢?

就是给表的加多一列version版本号,每次更新记录version都升级一下(version=version+1)。具体流程就是先查出当前的版本号version,然后去更新修改数据时,确认下是不是刚刚查出的版本号,如果是才执行更新

比如,我们更新前,先查下数据,查出的版本号是version =1

select order_id,version from order where order_id='666';

然后使用version =1订单Id一起作为条件,再去更新

update order set version = version +1,status='P' where  order_id='666' and version =1

最后更新成功,才可以处理业务逻辑,如果更新失败,默认为重复请求,直接返回。

流程图如下:

幂等操作,java,java,大数据,分布式

为什么版本号建议自增的呢?

因为乐观锁存在ABA的问题,如果version版本一直是自增的就不会出现ABA的情况啦。

5.8 分布式锁

分布式锁实现幂等性的逻辑就是,请求过来时,先去尝试获得分布式锁,如果获得成功,就执行业务逻辑,反之获取失败的话,就舍弃请求直接返回成功。执行流程如下图所示:

幂等操作,java,java,大数据,分布式

  • 分布式锁可以使用Redis,也可以使用ZooKeeper,不过还是Redis相对好点,因为较轻量级。

  • Redis分布式锁,可以使用命令SET EX PX NX + 唯一流水号实现,分布式锁的key必须为业务的唯一标识哈

  • Redis执行设置key的动作时,要设置过期时间哈,这个过期时间不能太短,太短拦截不了重复请求,也不能设置太长,会占存储空间。

6. HTTP的幂等

我们的接口,一般都是基于http的,所以我们再来聊聊Http的幂等吧。HTTP 请求方法主要有以下这几种,我们看下各个接口是否都是幂等的。

  • GET方法

  • HEAD方法

  • OPTIONS方法

  • DELETE方法

  • POST 方法

  • PUT方法

6.1 GET 方法

HTTP 的GET方法用于获取资源,可以类比于数据库的select查询,不应该有副作用,所以是幂等的。它不会改变资源的状态,不论你调用一次还是调用多次,效果一样的,都没有副作用。

如果你的GET方法是获取最近最新的新闻,不同时间点调用,返回的资源内容虽然不一样,但是最终对资源本质是没有影响的哈,所以还是幂等的。

6.2 HEAD 方法

HTTP HEAD和GET有点像,主要区别是HEAD不含有呈现数据,而仅仅是HTTP的头信息,所以它也是幂等的。如果想判断某个资源是否存在,很多人会使用GET,实际上用HEAD则更加恰当。即HEAD方法通常用来做探活使用。

6.3 OPTIONS方法

HTTP OPTIONS 主要用于获取当前URL所支持的方法,也是有点像查询,因此也是幂等的。

6.4 DELETE方法

HTTP DELETE 方法用于删除资源,它是的幂等的。比如我们要删除id=666的帖子,一次执行和多次执行,影响的效果是一样的呢。

6.5 POST 方法

HTTP POST 方法用于创建资源,可以类比于提交信息,显然一次和多次提交是有副作用,执行效果是不一样的,不满足幂等性

比如:POST http://www.tianluo.com/articles的语义是在http://www.tianluo.com/articles下创建一篇帖子,HTTP 响应中应包含帖子的创建状态以及帖子的 URI。两次相同的POST请求会在服务器端创建两份资源,它们具有不同的 URI;所以,POST方法不具备幂等性

6.6 PUT 方法

HTTP PUT 方法用于创建或更新操作,所对应的URI是要创建或更新的资源本身,有副作用,它应该满足幂等性。

比如:PUT http://www.tianluo.com/articles/666的语义是创建或更新 ID 为666的帖子。对同一 URI 进行多次 PUT 的副作用和一次 PUT 是相同的;因此,PUT 方法具有幂等性。文章来源地址https://www.toymoban.com/news/detail-677403.html

到了这里,关于实战,实现幂等的8种方案!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Java】三种方案实现 Redis 分布式锁

    setnx、Redisson、RedLock 都可以实现分布式锁,从易到难得排序为:setnx Redisson RedLock。一般情况下,直接使用 Redisson 就可以啦,有很多逻辑框架的作者都已经考虑到了。 1.1、简单实现 下面的锁实现可以用在测试或者简单场景,但是它存在以下问题,使其不适合用在正式环境。

    2024年02月05日
    浏览(50)
  • 【分布式】java实现分布式事务的五种方案

    用户支付完成会将支付状态及订单状态保存在订单数据库中,由订单服务去维护订单数据库。由库存服务去维护库存数据库的信息。下图是系统结构图: 如何实现两个分布式服务(订单服务、库存服务)共同完成一件事即订单支付成功自动减库存,这里的关键是如何保证两个

    2024年04月11日
    浏览(49)
  • Spring Boot 实现接口幂等性的 4 种方案

    现在的系统或平台,为了追求体验性、内容丰富性,都是前后端分离,系统为了解藕会引入各种MQ等,都不可避免就引入了数据幂等性的问题。 幂等是一个数学与计算机学概念,在数学中某一运算为幂等时,其作用在任一元素两次会和其作用一次的结果相同。 在计算机编程中

    2024年02月06日
    浏览(56)
  • rabbitmq+springboot实现幂等性操作

    文章目录 1.场景描述 1.1 场景1 1.2 场景2 2.原理 3.实战开发 3.1 建表 3.2 集成mybatis-plus 3.3 集成RabbitMq 3.3.1 安装mq 3.3.2 springBoot集成mq 3.4 具体实现 3.4.1 mq配置类 3.4.2 生产者 3.4.3 消费者 消息中间件是分布式系统常用的组件,无论是异步化、解耦、削峰等都有广泛的应用价值。我们

    2024年02月10日
    浏览(43)
  • 高并发下数据幂等问题的9种解决方案

    严格来说,所谓人云亦云的接口幂等性,大部分场景是要求接口防重或数据幂等,而不是接口幂等,很多人都搞混了。 举例:后端做了支付防重,用户对单一订单重复支付,再次支付不是提示支付成功(接口幂等是要求多次请求返回的结果一致),而是提示请勿重复支付。

    2024年03月23日
    浏览(36)
  • Hbase数据库完全分布式搭建以及java中操作Hbase

    基础的环境准备不在赘述,包括jdk安装,防火墙关闭,网络配置,环境变量的配置,各个节点之间进行免密等操作等。使用的版本2.0.5. 参考官方文档 分布式的部署,都是在单节点服务的基础配置好配置,直接分发到其他节点即可。 jdk路径的配置,以及不适用内部自带的zk. 配

    2024年02月03日
    浏览(48)
  • SpringBoot中接口幂等性实现方案-自定义注解+Redis+拦截器实现防止订单重复提交

    SpringBoot+Redis+自定义注解实现接口防刷(限制不同接口单位时间内最大请求次数): SpringBoot+Redis+自定义注解实现接口防刷(限制不同接口单位时间内最大请求次数)_redis防刷_霸道流氓气质的博客-CSDN博客 以下接口幂等性的实现方式与上面博客类似,可参考。 什么是幂等性? 幂等

    2024年02月15日
    浏览(55)
  • 微服务---分布式多级缓存集群实现方案(Caffeine+redis+nginx本地缓存+Canal数据同步)

    传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图: 存在下面的问题: •请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈 •Redis缓存失效时,会对数据库产生冲击 多级缓存就是充分利用请求处理的每个环节,分别添加缓存,减轻T

    2024年02月12日
    浏览(41)
  • 如何保证分布式情况下的幂等性

    关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。 什么是幂等 幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。 在编程中⼀个幂等操作的特

    2024年02月07日
    浏览(52)
  • SpringBoot自定义注解+AOP+redis实现防接口幂等性重复提交,从概念到实战

    本文为千锋教育技术团独家创作,更多技术类知识干货,点个关注持续追更~ 接口幂等性是Web开发中非常重要的一个概念,它可以保证多次调用同一个接口不会对结果产生影响。如果你想了解更多关于接口幂等性的知识,那么本文就是一个不错的起点。 在Web开发中,我们经常

    2024年02月03日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包