【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论

这篇具有很好参考价值的文章主要介绍了【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


引言

两个原因让我想写这篇文章,一是做矩阵题目的时候就发现这三货经常绑在一起,让人想去探寻其中奥秘;另一就是今天学了向量组的秩,让我想起来了之前遗留下来的一个问题:到底存不存在系数矩阵的秩和增广矩阵的秩之差比 1 大的情况?可能这个问题有点抽象,不过看了下面的具体说明应该就能理解了。


一、回顾

问题起因是这样,我在写行列式的文章中关于克莱姆法则应用的说法是这样的:

【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论,# 数学一,线性代数,矩阵,向量,线性方程组,秩,考研
有读者建议,把方程组无解的情况写成 r ( A ) + 1 = r ( A ‾ ) r(A) +1 = r(\overline{A}) r(A)+1=r(A) 而非写成 r ( A ) ≠ r ( A ‾ ) r(A) \ne r(\overline{A}) r(A)=r(A) 。 我当时还未复习到方程组和向量部分,有这样的疑问:为什么非得是相差 1 ,我如果 A A A 有很多行为 0 ,增广矩阵的秩不就可以比系数矩阵大不止 1 吗?

我当时隐约感觉是行秩和列秩模糊的问题。一方面矩阵中,我们比较常用的是初等行变换,忽视了列变换以及列秩,另一方面,列秩在方阵中和行秩是一样的。

起初我也是认为,列秩没什么用的,直到学到了向量这一部分。由于一般我们指的向量是列向量,那么由一个向量组构成的矩阵,自然考虑的是列秩。

因此我们针对一个一般性的 m × n m \times n m×n 矩阵和 n n n m m m 维的向量组进行梳理,请看下文。


二、梳理

对于一般齐次线性方程组:

【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论,# 数学一,线性代数,矩阵,向量,线性方程组,秩,考研

以及一般非齐次线性方程组:

【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论,# 数学一,线性代数,矩阵,向量,线性方程组,秩,考研

α 1 = ( a 11 , a 21 , … , a m 1 ) T , α 2 = ( a 12 , a 22 , … , a m 2 ) T , … , α n = ( a 1 n , a 2 n , … , a m n ) T , b = ( b 1 , b 2 , … , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,\pmb{b}=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,,am1)T,α2=(a12,a22,,am2)T,,αn=(a1n,a2n,,amn)T,b=(b1,b2,,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( 1.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (1.1) x1α1+x2α2++xnαn=01.1 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( 2.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (2.1) x1α1+x2α2++xnαn=b2.1

X = ( x 1 , x 2 , … , x n ) T X=(x_1,x_2,\dots,x_n)^T X=(x1,x2,,xn)T ,矩阵 A = [ α 1 , α 2 , … , α n ] A=[\alpha_1,\alpha_2,\dots,\alpha_n] A=[α1,α2,,αn] ,即
【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论,# 数学一,线性代数,矩阵,向量,线性方程组,秩,考研
则方程组(I)(II)可表示为如下矩阵形式: A X = 0 ( 1.2 ) AX=0(1.2) AX=01.2 A X = b ( 2.2 ) AX=b(2.2) AX=b2.2

齐次线性方程组

对于齐次线性方程组(I),它有 m m m 个约束方程, n n n 个未知数。首先我们应了解的是,不管方程个数和未知数个数多少,不可能无解,都是存在零解的。我们要讨论,就是讨论有没有非零解。我们分三种情况:

(一) m < n . m < n. m<n.

个数大于维数,向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 必线性相关,则该向量组的秩 < n <n <n ,根据三秩相等性质, r ( A ) < n . r(A)<n. r(A)<n.

此时齐次线性方程组约束条件个数小于未知数,必有一个未知数无法受限制,如果那个不受限制的未知数取非零的话,就存在非零解,即线性相关。

这种情况其实没什么好讨论的,因为肯定存在非零解,所以这也是为什么书上很少提及的原因吧。

(二) m = n . m=n. m=n.

此时就有讨论的必要了,因为方程组可能只有零解,也可能有非零解。

若齐次方程组只有零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.

我们此时可以得出 ∣ A ∣ ≠ 0 |A| \ne 0 A=0,即因为系数矩阵是方阵且满秩。

若齐次方程组有非零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.

为什么是小于 n n n 呢?因为构成系数矩阵的列向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn的秩小于 n n n ,根据三秩相等性质,该矩阵的秩亦小于 n n n

(三) m > n . m > n. m>n.

此时约束方程个数更多,不过不影响什么。系数矩阵的秩仍然是满足 r ( A ) ≤ n , r(A) \leq n, r(A)n, 则:

若齐次方程组只有零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.

我们此时不可以得出 ∣ A ∣ ≠ 0 |A| \ne 0 A=0,即因为系数矩阵不方阵,不存在行列式一说。

若齐次方程组有非零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.

把这三种情况总结起来,其实还是第二种情况的结论。因此不论是否是方阵,未知数和方程的个数如何,都有如下结论:即

  • 齐次方程组只有零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.

非齐次线性方程组

对于非齐次线性方程组(II),它有 m m m 个约束方程, n n n 个未知数,右端常数向量为 b = ( b 1 , b 2 , … , b m ) \pmb{b=(b_1,b_2,\dots,b_m)} b=(b1,b2,,bm) ,增广矩阵为 A ‾ = [ A ∣ b ] . \overline{A}=[A|b]. A=[Ab].

我们从其对应的齐次线性方程组(I)出发,若(I)只有零解,根据上述结论,有向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关且 r ( A ) = n . r(A)=n. r(A)=n.

接下来我们讨论此时非齐次的情况,若非齐次线性方程组(II)无解,则向量 b \pmb{b} b 不能被无关的向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性表示,故增广矩阵的列向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,b 也线性无关,可得 r ( A ‾ ) = n + 1 r(\overline{A})=n+1 r(A)=n+1 ,此时需要讨论 m , n m,n m,n 之间的数量关系。

r ( A ) = n r(A)=n r(A)=n 可知, m ≥ n m \geq n mn (如果 m < n m<n m<n 的话那秩就不可能是 n n n 了,秩最多为 m m m ) 。若 m = n m =n m=n ,有 r ( A ‾ ) ≤ min ⁡ { m , n + 1 } = m = n r(\overline{A})\leq \min\{m,n+1\}=m=n r(A)min{m,n+1}=m=n ,与 r ( A ‾ ) = n + 1 r(\overline{A})=n+1 r(A)=n+1 矛盾;若 m > n m>n m>n m = n + 1 m=n+1 m=n+1 ,有 r ( A ‾ ) ≤ { n + 1 , n + 1 } = n + 1 r(\overline{A})\leq \{n+1,n+1\}=n+1 r(A){n+1,n+1}=n+1 ,符合;若 m > n + 1 m>n+1 m>n+1 ,则有 r ( A ‾ ) ≤ { m , n + 1 } = n + 1 r(\overline{A}) \leq \{m,n+1\}=n+1 r(A){m,n+1}=n+1 ,符合。

因此,对于 m ≤ n m \leq n mn 的非齐次线性方程组,此时不可能无解;而对于 m ≥ n + 1 m \geq n+1 mn+1 的非齐次线性方程组,此时有结论 r ( A ‾ ) = n + 1. r(\overline{A})=n+1. r(A)=n+1.

若非齐方程组(II)有解,则向量 b \pmb{b} b 能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性表示,又因为向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关,故 r ( A ‾ ) = n = r ( A ) . r(\overline{A})=n=r(A). r(A)=n=r(A).

若方程组(II)对应的齐次方程组(I)有非零解,根据前一部分的结论,方程组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关且 r ( A ) < n . r(A)<n. r(A)<n.

我们讨论此时的非齐次方程组(II)的情况,若方程组(II)无解,则向量 b \pmb{b} b 不能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性表示,但由于向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 是线性相关的,故增广矩阵的列向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,b 线性相关,可得 r ( A ‾ ) < n + 1 r(\overline{A})<n+1 r(A)<n+1 r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

因为向量 b \pmb{b} b 不能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性表示,则向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,b 的秩比向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 多 1 ,即 r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.
O.O 这个还是可以直观理解的。向量组是一列一列的,加了一列不能被原来表示的列,肯定秩加了 1 嘛。

若方程组(II)有解,则向量 b \pmb{b} b 能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性表示,故 r ( A ‾ ) = r ( A ) < n . r(\overline{A})=r(A)<n. r(A)=r(A)<n.

如下图所示,讨论了所有情况下的秩的特征。

【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论,# 数学一,线性代数,矩阵,向量,线性方程组,秩,考研

总结一下可以得到如下一般性的结论:

  • 非齐次方程组有解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
  • 非齐次方程组无解 ⇔ \Leftrightarrow r ( A ‾ ) ≠ r ( A ) , r(\overline{A})\ne r(A), r(A)=r(A), r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

有解其实还可以再做讨论,就放在后面方程组那一章再来细说吧。


写在最后

看来还是自己疏忽了三秩相等的性质,才会产生开头那样的疑问。

现在也越来越认同,其实向量才是贯穿线性代数的重要工具。文章来源地址https://www.toymoban.com/news/detail-677501.html

到了这里,关于【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【考研数学】线性代数第四章 —— 线性方程组(2,线性方程组的通解 | 理论延伸)

    承接前文,继续学习线性方程组的内容,从方程组的通解开始。 (1)基础解系 —— 设 r ( A ) = r n r(A)=rn r ( A ) = r n ,则 A X = 0 pmb{AX=0} A X = 0 所有解构成的解向量组的极大线性无关组称为方程组 A X = 0 pmb{AX=0} A X = 0 的一个基础解系。基础解系中所含有的线性无关的解向量的个

    2024年02月11日
    浏览(57)
  • LA@齐次线性方程组解的结构

    齐次线性方程组的解的线性组合还是方程组的解 设 ξ 1 , ⋯   , ξ r xi_1,cdots,xi_r ξ 1 ​ , ⋯ , ξ r ​ 都是 ( 2 ) (2) ( 2 ) 的解,则 ∑ i = 1 r = k i ξ i sum_{i=1}^r=k_ixi_{i} ∑ i = 1 r ​ = k i ​ ξ i ​ 证明1: 对于齐次线性 ( 2 ) (2) ( 2 ) ,如果两向量 ξ 1 , ξ 2 xi_1,xi_2 ξ 1 ​ , ξ 2 ​ 都是

    2024年02月11日
    浏览(37)
  • 线性代数笔记4.4(二)非齐次线性方程组解的结构

    首先 Ax = b是一个非齐次线性方程组,若Ax = 0,则叫这个齐次方程组为导出组 性质 若a1,a2是Ax = b的解,则a1 - a2 是Ax = 0的解,即非齐次方程组的解相减得到齐次方程组的解 非齐次线性方程组的解与导出组的解相加以后,还是非齐次方程组的解 非齐次线性方程组的解:等于一个

    2024年02月07日
    浏览(63)
  • 【线性代数】齐次与非齐次线性方程组有解的条件

    A bm{A} A 是 m × n m times n m × n 矩阵,对其按列分块为 A = [ a 1 , a 2 , . . . , a n ] A = [bm{a}_1, bm{a}_2, ..., bm{a}_n] A = [ a 1 ​ , a 2 ​ , ... , a n ​ ] ,则齐次线性方程组 A X = 0 bm{AX} = bm{0} AX = 0 的向量表达式为: x 1 a 1 + x 2 a 2 + . . . + x n a n = 0 x_1bm{a}_1 + x_2bm{a}_2 + ... + x_nbm{a}_n = b

    2024年02月08日
    浏览(44)
  • 线性代数学习笔记(二十九)——方程组解的结构(一)

    停更2年多了,做事得有始有终,继续更新。。。 本篇笔记回顾了线性方程组解的三种情况,并讨论了齐次线性方程组解的结构,并介绍了齐次线性方程组解的相关性质。其中重点讨论了基础解系定义,以及基础解系的求法和解题步骤,并对基础解系结果进行验证;还讨论了

    2024年02月09日
    浏览(49)
  • 【数值计算方法(黄明游)】解线性代数方程组的迭代法(一):向量、矩阵范数与谱半径【理论到程序】

       注意:速读可直接跳转至“4、知识点总结”及“5、计算例题”部分   当涉及到线性代数和矩阵理论时, 向量、矩阵范数以及谱半径 是非常重要的概念,下面将详细介绍这些内容: a. 定义及性质   考虑一个 n n n 维向量 x x x ,定义一个实值函数 N ( x ) N(x) N ( x ) ,

    2024年01月25日
    浏览(47)
  • 线性代数(三) 线性方程组&向量空间

    如何利用行列式,矩阵求解线性方程组。 用矩阵方程表示 齐次线性方程组:Ax=0; 非齐次线性方程组:Ax=b. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的秩 B表示A的增广矩阵 n表示末知数个数 增广矩阵 矩阵的秩 秩r= 未知

    2024年02月13日
    浏览(46)
  • 【线性代数】通过矩阵乘法得到的线性方程组和原来的线性方程组同解吗?

    如果你进行的矩阵乘法涉及一个线性方程组 Ax = b,并且你乘以一个可逆矩阵 M,且产生新的方程组 M(Ax) = Mb,那么这两个系统是等价的;它们具有相同的解集。这是因为可逆矩阵的乘法可以视为一个可逆的线性变换,不会改变方程解的存在性或唯一性。 换句话说,如果你将原

    2024年02月03日
    浏览(61)
  • 线性代数(主题篇):第三章:向量组 、第四章:方程组

    1.概念 § 3 §3 §3 向量组 { ①部分相关,整体相关 ②整体无关,部分无关 ③低维无关,高维无关 ④高维相关,低维相关 begin{cases} ①部分相关,整体相关\\\\ ②整体无关,部分无关\\\\ ③低维无关,高维无关\\\\ ④高维相关,低维相关 end{cases} ⎩ ⎨ ⎧ ​ ① 部分相关,整体相关

    2024年02月15日
    浏览(51)
  • 排列矩阵和三角矩阵——Matlab解线性方程组(2)

    目录 前言 一、排列矩阵是什么? 二、三角形矩阵 总结         上一篇文章讲了线性方程组的高斯消元法 。本文是一个辅助概念,讲解上文得到的P矩阵和L与U矩阵所代表的排列矩阵和上三角矩阵。         排列矩阵(permutation matrix)是单位矩阵经过行列交换而得到的新矩

    2024年02月07日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包