csdn冷知识:如何在csdn里输入公式或矩阵

这篇具有很好参考价值的文章主要介绍了csdn冷知识:如何在csdn里输入公式或矩阵。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 输入公式

2 输入矩阵

3 如何输入复杂公式

4 如何修改,已经生成的公式


1 输入公式

  • 进入编辑模式
  • 点击右边的菜单:公式
  • 然后进入公式编辑器,选择右边的 ... 可以选择大括号等,右边还有矩阵符号
  • 选择后你需要创建几行几列的格式后
  • atex 公式会出现格式模板,下面是预览窗口
  • 修改内容,条件非格式内容,或调整格式,就可以输出公式了

csdn冷知识:如何在csdn里输入公式或矩阵,矩阵,线性代数

csdn冷知识:如何在csdn里输入公式或矩阵,矩阵,线性代数

csdn冷知识:如何在csdn里输入公式或矩阵,矩阵,线性代数

下面是生成的2元一次方程组的公式效果

csdn冷知识:如何在csdn里输入公式或矩阵,矩阵,线性代数

2 输入矩阵

  • 和上面的公式,输入时语法略有不同
  • 每个矩阵的列元素之间用 & 分隔

csdn冷知识:如何在csdn里输入公式或矩阵,矩阵,线性代数

csdn冷知识:如何在csdn里输入公式或矩阵,矩阵,线性代数

下面是生成的2*2的矩阵效果

 

3 如何输入复杂公式

csdn冷知识:如何在csdn里输入公式或矩阵,矩阵,线性代数

下面是效果

x1=
\begin{vmatrix} 
b1 & a12\\
b2 & a22 
\end{vmatrix} /\begin{vmatrix} 
a11 & a12\\
a21 & a22 
\end{vmatrix}

,
x2=
\begin{vmatrix} 
a11 & b1\\
a21 & b2 
\end{vmatrix} /\begin{vmatrix} 
a11 & a12\\
a21 & a22 
\end{vmatrix}

4 如何修改已经生成的公式

  • 如果发现输入的公式,需要修改
  • 只需要进入编辑模式,双击公式,即可跳转到编辑窗口

csdn冷知识:如何在csdn里输入公式或矩阵,矩阵,线性代数文章来源地址https://www.toymoban.com/news/detail-677589.html

到了这里,关于csdn冷知识:如何在csdn里输入公式或矩阵的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)

    🌈你好呀!我是 是Yu欸 🌌 2024每日百字篆刻时光,感谢你的陪伴与支持 ~ 🚀 欢迎一起踏上探险之旅,挖掘无限可能,共同成长! 主成分分析(PCA,Principal Component Analysis)是一项在高维数据中,寻找最重要特征的降维技术,大大减少数据的维度,而不显著损失信息量。 本文

    2024年04月28日
    浏览(47)
  • 线性代数:线性方程求解、矩阵的逆、线性组合、线性独立

    本文参考www.deeplearningbook.org一书第二章2.3 Identity and Inverse Matrices 2.4 Linear Dependence and Span 本文围绕 线性方程求解 依次介绍矩阵的逆、线性组合、线性独立等线性代数的基础知识点。 本文主要围绕求解线性方程展开,我们先把线性方程写出来,方程如下: 其中,是已知的;,

    2024年02月08日
    浏览(50)
  • 线性代数本质系列(一)向量,线性组合,线性相关,矩阵

    本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆法则 非方阵 点积与对偶性 叉积 以线性变换

    2024年02月04日
    浏览(50)
  • 0203逆矩阵-矩阵及其运算-线性代数

    定义7 对于 n n n 阶矩阵A,如果有一个 n n n 阶矩阵B,使 A B = B A = E AB=BA=E A B = B A = E 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,简称逆阵。 定理1 若矩阵A可逆,则 ∣ A ∣ ≠ 0 vert Avert not = 0 ∣ A ∣  = 0 证明: A 可逆,即有 A − 1 ,使得 A A − 1 = E ∣ A A − 1 ∣ = ∣ A

    2024年04月13日
    浏览(56)
  • 高等代数(七)-线性变换03:线性变换的矩阵

    § 3 § 3 §3 线性变换的矩阵 设 V V V 是数域 P P P 上 n n n 维线性空间, ε 1 , ε 2 , ⋯   , ε n varepsilon_{1}, varepsilon_{2}, cdots, varepsilon_{n} ε 1 ​ , ε 2 ​ , ⋯ , ε n ​ 是 V V V 的一组基, 现在我们来建立线性变换与矩阵的关系. 空间 V V V 中任一向量 ξ xi ξ 可以经 ε 1 , ε 2 , ⋯  

    2024年02月20日
    浏览(51)
  • 【理解线性代数】(四)线性运算的推广与矩阵基础

    工业生产的发展趋势总是从单件生产到批量生产。科学技术研究也是一样,总是从简单计算到复合运算、批量运算。批量意味着生产能力、处理能力的提升。计算机从16位发展到64位,从单核发展到多核;计算机从CPU处理数据发展到GPU处理数据;大数据、人工智能领域的大模型

    2024年02月09日
    浏览(50)
  • 线性代数|证明:线性变换在两个基下的矩阵相似

    前置定义 1(基变换公式、过渡矩阵) 设 α 1 , ⋯   , α n boldsymbol{alpha}_1,cdots,boldsymbol{alpha}_n α 1 ​ , ⋯ , α n ​ 及 β 1 , ⋯   , β n boldsymbol{beta}_1,cdots,boldsymbol{beta}_n β 1 ​ , ⋯ , β n ​ 是线性空间 V n V_n V n ​ 中的两个基, { β 1 = p 11 α 1 + p 21 α 2 + ⋯ + p n 1 α n β 2

    2024年02月03日
    浏览(50)
  • 线性代数(4):伴随矩阵、逆矩阵和矩阵的秩

             A 为一个n阶矩阵,行列式 | A | 的每个元素a ij 的代数余子式Aij组成的矩阵叫做伴随矩阵,记作 A* ;         a.  如果 A 矩阵可逆,A* = | A | A^-1         b.  | A | = | A |^(n-1)         c.  ( kA )* = k^(n-1) A*         a.  若矩阵的行列式结果值不等于 0 ,那么这个矩阵就是

    2024年02月08日
    浏览(60)
  • 【线性代数与矩阵论】Jordan型矩阵

    2023年11月3日 #algebra 在对向量做线性变换时,向量空间的某个向量的方向不发生改变,而只是在其方向上进行拉伸,则该向量是线性变换的特征向量,其在变换中被拉伸的倍数为该特征向量的特征值(特征根)。 矩阵的相同特征值有其对应的代数重数与几何重数,相同特征值

    2024年02月04日
    浏览(48)
  • 0202矩阵的运算-矩阵及其运算-线性代数

    定义2 设有两个 m × n mtimes n m × n 橘子 A = ( a i j ) 和 B = ( b i j ) A=(a_{ij})和B=(b_{ij}) A = ( a ij ​ ) 和 B = ( b ij ​ ) ,那么矩阵A与B的和记为A+B,规定为 A + B = ( a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 + b 21 a 22 + b 22 ⋯ a 2 n + b 2 n ⋮ ⋮ ⋮ a m 1 + b m 1 a m 2 + b m 2 ⋯ a m n + b m n ) A+B=begin{pmatr

    2024年04月25日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包