数据结构:时间复杂度和空间复杂度计算

这篇具有很好参考价值的文章主要介绍了数据结构:时间复杂度和空间复杂度计算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.什么是时间复杂度和空间复杂度?

1.1算法效率


算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,
而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主
要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间
复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。
所以我们如今已经不需要再特别关注一个算法的空间复杂度。

1.2 时间复杂度的概念


时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运
行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机
器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻
烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比
例,算法中的基本操作的执行次数,为算法的时间复杂度。

1.3 空间复杂度的概念


空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用
了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计
算规则基本跟实践复杂度类似,也使用大O渐进表示法。
 

 大O的渐进表示法

#include <stdio.h>

// 请计算一下Func1基本操作执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

 Func1 执行的基本操作次数 :F(N)=N^2+N*2+10

        实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
        1、用常数1取代运行时间中的所有加法常数。
        2、在修改后的运行次数函数中,只保留最高阶项。
        3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:O(N^2)

 N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执
行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
 

 2.时间复杂度与空间复杂度的区别

时间复杂度:

判断算法的时间复杂度通常是通过分析算法中的基本操作次数来进行的。以下是一些常用的判断时间复杂度的方法:

1. 计算操作的执行次数:根据算法的实际代码或伪代码,计算出每个操作(比如循环、条件判断、函数调用等)在最坏情况下执行的次数。

2. 识别循环结构:对于循环结构,需要确定循环的迭代次数,并将循环体中的操作次数乘以迭代次数。

3. 分析递归算法:对于递归算法,可以使用递归树或递归方程的方法来进行分析,推导出递归的深度和每层的操作次数。

4. 考虑最坏情况:时间复杂度通常使用算法最坏情况下的操作次数来表示,这样可以保证算法在任何情况下的时间表现。

5. 忽略常数项和低阶项:在计算时间复杂度时,通常忽略操作次数的常数项和低阶项,只保留最高阶的项,使用大O符号表示。

需要注意的是,时间复杂度只是对算法的一个粗略估计,它描述的是算法运行时间与输入规模的增长趋势,并不具体表示实际的执行时间。此外,时间复杂度是在理论上对算法效率的分析,实际运行时的表现可能受到各种因素影响。

因此,在分析时间复杂度时,需要结合具体的算法实现、输入规模以及实际的运行环境等因素来进行判断和评估。


空间复杂度 

判断算法的空间复杂度通常是通过分析算法在执行过程中所需的额外空间来进行的。以下是一些常用的判断空间复杂度的方法:

1. 计算变量占用的空间:根据算法中定义的变量、数据结构和临时存储空间等,计算出在最坏情况下所需的额外空间。

2. 考虑递归函数调用栈:对于使用递归的算法,需要考虑递归函数调用时占用的栈空间。

3. 分析数据结构的空间复杂度:对于使用的数据结构(如数组、链表、栈、队列等),需要根据其存储方式和元素数量来分析其占用的额外空间。

4. 考虑函数调用和递归深度:在算法执行过程中,如果有函数调用或递归调用,需要考虑每次调用时所需的栈空间。

5. 忽略常数项和低阶项:与时间复杂度类似,空间复杂度的计算中通常忽略常数项和低阶项,只保留最高阶的项,使用大O符号表示。

需要注意的是,空间复杂度表示的是算法在执行过程中所需的额外空间,而不是算法所操作的原始输入数据的空间。因此,在计算空间复杂度时,应将注意力放在算法运行过程中所需额外空间的分析上。

与时间复杂度类似,空间复杂度也只是对算法的一个粗略估计,它描述的是算法所需额外空间随输入规模的增长趋势,并不具体表示实际的空间使用情况。在实际应用中,也要结合具体的算法实现、数据规模以及可用内存等因素来进行判断和评估。


 二者的区别

时间复杂度和空间复杂度是用来衡量算法效率的两个重要指标。它们分别关注算法在执行过程中所需的时间和空间资源消耗。

时间复杂度(Time Complexity)衡量的是算法执行所需的时间,也可以说是算法的运行时间。它描述的是算法执行所消耗的操作步骤数量与输入规模之间的关系。常用大O符号(O)表示时间复杂度。

时间复杂度反映了算法在处理数据时所需的时间随着输入规模的增加而增长的速度。一般来说,时间复杂度越低,算法的执行效率越高。常见的时间复杂度包括常数时间O(1)、线性时间O(n)、对数时间O(log n)、平方时间O(n^2)等。

空间复杂度(Space Complexity)衡量的是算法执行所需的额外空间,也可以说是算法的存储空间。它描述的是算法所需的额外空间与输入规模之间的关系。同样,常用大O符号(O)表示空间复杂度。

空间复杂度反映了算法在处理数据时所需的额外空间随着输入规模的增加而增长的速度。一般来说,空间复杂度越低,算法所需的额外空间越小。常见的空间复杂度包括常数空间O(1)、线性空间O(n)、对数空间O(log n)等。

需要注意的是,时间复杂度和空间复杂度是独立且不可兼得的。某个算法可能在时间复杂度上表现良好,但在空间复杂度上较高,或者反之。因此,在选择算法时,需要根据实际情况综合考虑时间和空间的权衡。文章来源地址https://www.toymoban.com/news/detail-677918.html

到了这里,关于数据结构:时间复杂度和空间复杂度计算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】---时间复杂度与空间复杂度

    💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃 个人主页 :阿然成长日记 👈点击可跳转 📆 个人专栏: 🔹数据结构与算法🔹C语言进阶 🚩 不能则学,不知则问,耻于问人,决无长进 🍭 🍯 🍎 🍏 🍊 🍋 🍒 🍇 🍉 🍓 🍑 🍈 🍌 🍐 🍍 · 时间复杂度的定义

    2024年02月15日
    浏览(53)
  • 数据结构——时间复杂度和空间复杂度

    1.算法效率 2.时间复杂度 3.空间复杂度 4. 常见时间复杂度以及复杂度oj练习 1.算法效率 1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢?比如对于以下斐波那契数的计算 我们看到虽然用递归的方式实现斐波那契很简单,但是简单一定代表效率高吗? 我们接着往下看。

    2024年02月13日
    浏览(49)
  • 数据结构入门 — 时间复杂度、空间复杂度

    数据结构_空间复杂度_时间复杂度讲解_常见复杂度对比 本文介绍数据结构中的时间复杂度和空间复杂度 ***文章末尾,博主进行了概要总结,可以直接看总结部分*** 博主博客链接:https://blog.csdn.net/m0_74014525 点点关注,后期持续更新系列文章 算法效率指的是算法在处理数据时

    2024年02月13日
    浏览(54)
  • 数据结构——时间复杂度与空间复杂度

    目录 一.什么是空间复杂度与时间复杂度 1.1算法效率 1.2时间复杂度的概念 1.3空间复杂度的概念 二.如何计算常见算法的时间复杂度 2.1大O的渐近表示法  使用规则 三.如何计算常见算法的空间复杂度 3.1 大O渐近表示法 3.2 面试题——消失的数字  3.3 面试题——旋转数组 分为两

    2024年02月07日
    浏览(46)
  • 数据结构:时间复杂度和空间复杂度计算

    算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度, 而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主 要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小

    2024年02月11日
    浏览(42)
  • 数据结构之时间复杂度与空间复杂度

    目录 1.算法效率 1.2算法的复杂度 1.3复杂度对于校招的重要性 ​编辑2.时间复杂度 空间复杂度: 1.1 如何衡量一个算法的好坏? 比方说我们非常熟悉的斐波拉契数列: 递归实现方式非常简洁,但一定好吗?如何衡量其好与坏? 定义: 算法在编写成可执行程序后,运行时需要

    2024年02月05日
    浏览(54)
  • 数据结构:算法(特性,时间复杂度,空间复杂度)

    算法(Algorithm)是对 特定问题求解步骤 的一种描述,它是指令的有限序列,其中的每条指令表示一个或多个操作。 一个算法必须总在执行有穷步之后结束,且每一步都可在有穷时间内完成。 算法必须是有穷的,而程序可以是无穷的 算法中每条指令必须有确切的含义,对于

    2024年02月06日
    浏览(57)
  • 算法的时间复杂度和空间复杂度(数据结构)

    目录 1、算法效率 1如何衡量一个算法的好坏 2算法的复杂度 2、时间复杂度 1时间复杂度的概念 2大O的渐进表示法 2时间复杂度计算例题 1、计算Func2的时间复杂度 2、计算Func3的时间复杂度 3、计算Func4的时间复杂度 4、计算strchr的时间复杂度 5、计算BubbleSort的时间复杂度 6、计算

    2024年02月03日
    浏览(68)
  • 数据结构(C):时间复杂度和空间复杂度

    目录 🚀 0.前言 🚀 1.为何会有时间复杂度和空间复杂度的概念 🚀 2.时间复杂度 2.1初步时间复杂度 2.2大O表示法 2.2.1.O(N*N) 2.2.2.O(N) 2.2.3.O(1) 2.3最坏情况? 2.3.1O(N*N) 2.4递归  2.4.1O(N) 2.4.2O(2^N) 🚀 3.空间复杂度 3.1O(1) 3.2 O(N) 🚀4.结束语         言C之言,聊

    2024年04月26日
    浏览(44)
  • 【数据结构和算法】时间复杂度和空间复杂度

    目录   一、前言 二、时间复杂度 2.1时间复杂度表示形式 2.1.1规则: 3.1如何计算时间复杂度 3.1.1线性阶 3.1.2平方阶 3.1.3对数阶 常见的时间复杂度排序: 三、空间复杂度 3.1Java的基本类型内存占用 数据结构和算法是程序的灵魂,这是某位程序员大佬所言,学习了这门,我们便可

    2023年04月09日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包