pytorch中 nn.Conv2d的简单用法

这篇具有很好参考价值的文章主要介绍了pytorch中 nn.Conv2d的简单用法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

pytorch中 nn.Conv2d的简单用法,ML,pytorch,人工智能,python

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,padding_mode='zeros')

参数介绍

  • in_channels:卷积层输入通道数

  • out_channels:卷积层输出通道数

  • kernel_size:卷积层的卷积核大小

  • padding:填充长度

  • stride:卷积核移动的步长

  • dilation:是否采用空洞卷积

  • groups:是否采用分组卷积

  • bias:是否添加偏置参数

  • padding_modepadding的模式

如果输入大小为:数量N即批处理大小(batch size),输入通道数C_in,输入高度H_in,输入宽度C_in。输出大小为:数量N,输出通道数C_out,输出高度H_out,输出宽度C_out。
i n p u t : ( N , C i n , H i n , W i n ) o u t p u t : ( N , C o u t , H o u t , W o u t ) input: \quad (N, C_{in},H_{in},W_{in}) \\ output: \quad (N,C_{out}, H_{out}, W_{out}) input:(N,Cin,Hin,Win)output:(N,Cout,Hout,Wout)
之间的转换为:
( N i , C o u t ) = b i a s ( C o u t ) + ∑ k = 0 C i n − 1 w e i g h t ( C o u t , k ) ∗ ( N i , k ) (N_i,C_{out}) = bias(C_{out}) + \sum_{k=0}^{C_{in}-1}weight(C_{out},k) * (N{i},k) (Ni,Cout)=bias(Cout)+k=0Cin1weight(Cout,k)(Ni,k)

H o u t = [ H i n + 2 ∗ p a d d i n g [ 0 ] − d i l a t i o n [ 0 ] ∗ ( k e r n a l s i z e [ 0 ] − 1 ) − 1 s t r i d e [ 0 ] + 1 ] H_{out} = [ \frac {H_{in} + 2 * padding[0] - dilation[0] *(kernal_size[0] - 1) - 1}{stride[0]} + 1] Hout=[stride[0]Hin+2padding[0]dilation[0](kernalsize[0]1)1+1]

W o u t = [ W i n + 2 ∗ p a d d i n g [ 1 ] − d i l a t i o n [ 1 ] ∗ ( k e r n e l s i z e [ 1 ] − 1 ) − 1 s t r i d e [ 1 ] + 1 ] W_{out} = [ \frac {W_{in} + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1} {stride[1]} + 1] Wout=[stride[1]Win+2padding[1]dilation[1](kernelsize[1]1)1+1]

对于二维简化的:
W i n , H i n 输入的宽、高 W o u t , H o u t 输出的宽,高 F 卷积核的大小 S 步长 P 边界填充 W_{in},H_{in} \quad 输入的宽、高 \\ W_{out},H_{out} \quad 输出的宽,高 \\ F \quad 卷积核的大小 \\ S \quad 步长 \\ P \quad 边界填充 Win,Hin输入的宽、高Wout,Hout输出的宽,高F卷积核的大小S步长P边界填充
那么输出的宽、高为:
W o u t = W i n − F W + 2 P S + 1 H o u t = H i n − F H + 2 P S + 1 W_{out} = \frac {W_{in} - F_{W} + 2P} S + 1 \\ H_{out} = \frac {H_{in} - F_{H} + 2P} S + 1 Wout=SWinFW+2P+1Hout=SHinFH+2P+1
在pytorch中的使用

  • 直接使用(不常见)
import torch 
import torch.nn as nn 
# https://www.bilibili.com/video/BV1644y1h7LN/?spm_id_from=333.337.search-card.all.click&vd_source=13dfbe5ed2deada83969fafa995ccff6

# 输入通道数
in_channels = 1
# 输出通道数 
out_channels = 1
# 批处理大小 
batch_size = 1
# 卷积核大小 (3,3)
kernel_size = 3
# 输入规格
input_size = [batch_size, in_channels, 4, 4]

# nn.Conv2d使用,其他默认值
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size)
# 随机输入特征图
input_feature_map = torch.randn(input_size)
# 打印输入特征图形状
print(input_feature_map.shape)
# 求出输出特征图
output_feature_map = conv_layer(input_feature_map)
# 打印出卷积核的规格
print(conv_layer.weight.shape)
# weight == out_channel * in_channel * height * weight
# 打印输出特征图大小
print(output_feature_map.shape)

输出:

torch.Size([1, 1, 4, 4])
torch.Size([1, 1, 3, 3])
torch.Size([1, 1, 2, 2])
  • 封装为类的形式
import torch 
from torch import nn

# 定义一个同样操作的卷积类
class Foo(nn.Module):
    def __init__(self, in_channel, out_channel):
        super(Foo,self).__init__()
        self.layer = nn.Sequential(
            nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3)
        )
    def forward(self, x):
        return self.layer(x)

# 实例化一个
conv2 = Foo(1,1)
# 输出特征图, input_feature_map_2 和 input_feature_map是相同的值
output_feature_map_2 = conv2(input_feature_map_2)
print(output_feature_map_2)

输出:

tensor([[[[ 0.5144,  0.0672],
          [ 0.2169, -0.0591]]]], grad_fn=<ConvolutionBackward0>)

可以观察到,这两个操作相同但是结果值却不相同。这是因为虽然两者实现了相同的卷积操作,但由于它们的初始化和权重值的不同,因此输出结果可能不完全一致。 另外,对于卷积操作的结果,输出的张量形状可能会有所不同,但数值内容应该是相似的。如果希望确保两种方式得到的输出结果完全一致,可以尝试使用相同的初始化参数,并确保权重值相同。文章来源地址https://www.toymoban.com/news/detail-678093.html

到了这里,关于pytorch中 nn.Conv2d的简单用法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • pytorch复现_conv2d

    2024年02月06日
    浏览(43)
  • Pytorch中的卷积与反卷积(conv2d和convTranspose2d)

    卷积是特征提取的常用操作,卷积可以改变图片的通道和大小,相比全连接操作,卷积可以减少计算量,并且充分融合图像的局部特征。    

    2024年02月06日
    浏览(38)
  • pytorch框架:conv1d、conv2d的输入数据维度是什么样的

    Conv1d 的输入数据维度通常是一个三维张量,形状为 (batch_size, in_channels, sequence_length),其中: batch_size 表示当前输入数据的批次大小; in_channels 表示当前输入数据的通道数,对于文本分类任务通常为 1,对于图像分类任务通常为 3(RGB)、1(灰度)等; sequence_length 表示当前输

    2024年01月16日
    浏览(47)
  • 在树莓派上实现numpy的conv2d卷积神经网络做图像分类,加载pytorch的模型参数,推理mnist手写数字识别,并使用多进程加速

    这几天又在玩树莓派,先是搞了个物联网,又在尝试在树莓派上搞一些简单的神经网络,这次搞得是卷积识别mnist手写数字识别 训练代码在电脑上,cpu就能训练,很快的: 然后需要自己在dataset里导出一些图片:我保存在了mnist_pi文件夹下,“_”后面的是标签,主要是在pc端导

    2024年02月07日
    浏览(33)
  • 【Pytorch】三维卷积 nn.Conv3d 用法

    nn.Conv3d 是 PyTorch 中实现三维卷积操作的类。 其输入和输出的维度如下: 输入维度: 输入张量的维度应为 (N, C_in, D, H, W) ,其中: N : 批量大小 (batch size),即一批输入数据中包含的样本数量。 C_in : 输入通道数 (number of input channels),即输入数据的通道数量,例如彩色图像通常

    2024年02月05日
    浏览(49)
  • pytorch之nn.Conv1d详解

    1、Conv1d 定义 class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 自然语言处理中一个句子序列,一维的,所以使用Conv1d,此时卷积核(没有batch_size,参数是共享的)除去chanel,也是一维的。  2、参数  in_channels(int) – 输入信号的通道。在

    2024年02月16日
    浏览(43)
  • pytorch中nn.Conv1d功能介绍

            在使用Conv1d函数时,pytorch默认你的数据是一维的,比如一句话“深度学习”可以用一个一维数组 [\\\'深\\\', \\\'度\\\', \\\'学\\\', \\\'习\\\'] 表示,这个数据就是一维的。图片是二维数据,它有长宽两个维度。         因此在使用 Conv1d 函数时,输入是一个三位数组,三个维度分别表

    2024年02月10日
    浏览(43)
  • python-函数用法-F.conv_transpose2d

    F.conv_transpose2d 对由多个输入平面组成的输入图像应用二维转置卷积算子, 有时也称为反卷积. 其中,weight是:输入通道,输出通 input – 输入tensor weight – 卷积核 bias – 可选的偏置 stride –卷积核的步幅, 可以是单个数字或一个元素元组 (sH, sW). 默认值: 1 padding – 在输入的两边

    2024年02月16日
    浏览(41)
  • Pytorch平均池化nn.AvgPool2d()使用记录

    【pytorch官方文档】 :https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html?highlight=avgpool2d#torch.nn.AvgPool2d 在由多通道组成的输入特征中进行2D平均池化计算 假设输入特征为S,输出特征为D 情况一 ceil_mode=False, count_include_pad=True(计算时包含零填充) 计算过程: 输出形状= floor[(3 - 3

    2023年04月19日
    浏览(32)
  • pytorch nn.ModuleList和nn.Sequential的用法笔记

    有部分内容转自: pytorch小记:nn.ModuleList和nn.Sequential的用法以及区别_慕思侣的博客-CSDN博客 但是有部分内容做了修改调整, 在构建网络的时候,pytorch有一些基础概念很重要,比如nn.Module,nn.ModuleList,nn.Sequential,这些类我们称为为容器(containers),可参考containers。本文中

    2024年02月13日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包