WebGL矩阵变换

这篇具有很好参考价值的文章主要介绍了WebGL矩阵变换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

变换矩阵:旋转

变换矩阵:平移

4×4的旋转矩阵 

示例代码:文章来源地址https://www.toymoban.com/news/detail-678554.html

到了这里,关于WebGL矩阵变换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MIT线性代数笔记-第31讲-线性变换及对应矩阵

    线性变换相当于是矩阵的抽象表示,每个线性变换都对应着一个矩阵 例: 考虑一个变换 T T T ,使得平面上的一个向量投影为平面上的另一个向量,即 T : R 2 → R 2 T:R^2 to R^2 T : R 2 → R 2 ,如图: ​   图中有两个任意向量 v ⃗ , w ⃗ vec{v} , vec{w} v , w 和一条直线,作 v ⃗

    2024年02月03日
    浏览(54)
  • 线性代数|推导:线性变换与在基下的矩阵一一对应

    前置定义 1 设 T T T 是线性空间 V n V_n V n ​ 中的线性变换,在 V n V_n V n ​ 中取定一个基 α 1 , α 2 , ⋯   , α n boldsymbol{alpha}_1,boldsymbol{alpha}_2,cdots,boldsymbol{alpha}_n α 1 ​ , α 2 ​ , ⋯ , α n ​ ,如果这个基在变换 T T T 下的像(用这个基线性表示)为 { T ( α 1 ) = a 11 α 1 +

    2024年02月04日
    浏览(56)
  • 高等代数(八)-线性变换07:矩阵的有理标准形

    § 7 矩阵的有理标准形 前一节中证明了复数域上任一矩阵 A boldsymbol{A} A 可相似于一个若尔当形矩阵, 这一节将对任意数域 P P P 来讨论类似的问题. 我们证明 P P P 上任一矩阵必相似于一个有理标准形矩阵. 定义 8 对数域 P P P 上的一个多项式 d ˙ ( λ ˙ ) = λ n ˙ + a 1 λ n − 1 + ⋯

    2024年02月19日
    浏览(46)
  • 高等代数(八)-线性变换02:λ-矩阵在初等变换下的标准形

    § 2 λ § 2 lambda §2 λ -矩阵在初等变换下的标准形 λ lambda λ -矩阵也可以有初等变换. 定义 3 下面的三种变换叫做 λ lambda λ -矩阵的初等变换: 矩阵的两行 (列) 互换位置; 矩阵的某一行 (列) 乘非零常数 c c c ; 矩阵的某一行 (列) 加另一行 (列) 的 φ ( λ ) varphi(lambda) φ ( λ ) 倍

    2024年02月19日
    浏览(45)
  • 线性代数中涉及到的matlab命令-第三章:矩阵的初等变换及线性方程组

    目录 1,矩阵的初等变换 1.1,初等变换 1.2,增广矩阵  ​1.3,定义和性质 1.4,行阶梯型矩阵、行最简型矩阵 1.5,标准形矩阵  1.6,矩阵初等变换的性质  2,矩阵的秩  3,线性方程组的解  初等变换包括三种:交换行或列、某行或列乘以一个非零系数、某行或列加上零一行

    2024年02月04日
    浏览(50)
  • MIT线性代数笔记-第27讲-复数矩阵,快速傅里叶变换

    对于实矩阵而言,特征值为复数时,特征向量一定为复向量,由此引入对复向量的学习 求模长及内积 假定一个复向量 z ⃗ = [ z 1 z 2 ⋮ z n ] vec{z} = begin{bmatrix} z_1 \\\\ z_2 \\\\ vdots\\\\ z_n end{bmatrix} z = ​ z 1 ​ z 2 ​ ⋮ z n ​ ​ ​ ,其中 z 1 , z 2 , ⋯   , z n z_1 , z_2 , cdots , z_n z 1 ​

    2024年02月05日
    浏览(51)
  • MIT_线性代数笔记:第 26 讲 复矩阵;快速傅里叶变换

    实矩阵也可能有复特征值,因此无法避免在矩阵运算中碰到复数,本讲学习处理复数矩阵和复向量。 最重要的复矩阵是傅里叶矩阵,它用于傅里叶变换。而对于大数据处理快速傅里叶变换(FFT)显得更为重要,它将傅立叶变换的矩阵乘法中运算的次数从 n 2 n^2 n 2 次降至 n l

    2024年01月17日
    浏览(42)
  • WebGL矩阵变换

    目录 变换矩阵:旋转 变换矩阵:平移 4×4的旋转矩阵  示例代码:

    2024年02月11日
    浏览(33)
  • WebGL矩阵变换库

    目录 矩阵变换库: Matrix4对象所支持的方法和属性如表所示: 方法属性规范:  虽然平移、旋转、缩放等变换操作都可以用一个4×4的矩阵表示,但是在写WebGL程序的时候,手动计算每个矩阵很耗费时间。为了简化编程,大多数We

    2024年02月11日
    浏览(37)
  • 线性代数(六) 线性变换

    《线性空间》定义了空间,这章节来研究空间与空间的关联性 函数是一个规则或映射,将一个集合中的每个元素(称为自变量)映射到另一个集合中的唯一元素(称为因变量)。 一般函数从 “A” 的每个元素指向 “B” 的一个函数 它不会有一个 “A” 的元素指向多于一个

    2024年02月09日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包