量化特征贡献度函数:feature_importances_函数/LGBMClassifier/XGBClassifier

这篇具有很好参考价值的文章主要介绍了量化特征贡献度函数:feature_importances_函数/LGBMClassifier/XGBClassifier。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

feature_importances_是scikit-learn机器学习库中许多模型对象的属性,在训练模型之后调用该属性可以输出各个特征在模型中的重要性。

示例代码:

from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import make_regression

# 生成一个示例数据集
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)

# 训练一个随机森林回归模型
rf = RandomForestRegressor(n_estimators=100, random_state=0)
rf.fit(X, y)

# 输出特征的重要性
print(rf.feature_importances_)

在上述代码中,我们训练了一个随机森林回归模型,并使用feature_importances_输出了各个特征的重要性。输出结果为:[0.08519548, 0.39799048, 0.40214713, 0.11466691],即第2个特征和第3个特征在模型中较为重要,而第1个和第4个特征的重要性相对较低。

通过观察特征的重要性分布情况,我们可以了解到哪些特征在模型预测中有更高的权重,从而可以进行模型的优化和特征的筛选。


LGBMClassifier

LGBMClassifier是一种基于决策树的集成型机器学习算法,它采用了基于梯度提升树(Gradient Boosting Decision Tree)的模型框架,并具有高效、灵活、精度高的特点。由于算法的高效性,LGBMClassifier逐渐成为机器学习领域中的常用算法。

LGBMClassifier的主要优势:

  1. 高效:相对其它基于梯度提升树的算法,LGBMClassifier 显著提高了运行速度。

  2. 精度高:LGBMClassifier 在大数据集上的训练精度能够与同类别的算法相比较。

  3. 支持并行化:LGBMClassifier 支持类似多线程的并行化处理,这可以大大提升训练效率。

  4. 可定制度高:LGBMClassifier 与其他集成的决策树模型一样,能够支持很多的调整方法。

示例代码:

from lightgbm import LGBMClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)

# 训练 LGBMClassifier 模型
model = LGBMClassifier()
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 输出模型的准确率
acc = model.score(X_test, y_test)
print("Accuracy is : ", acc)

在上述代码中,示例数据集使用了鸢尾花数据集,将其分成了训练集和测试集,使用LGBMClassifier训练模型并在测试集上进行预测,在测试集上输出了模型的准确率。


XGBClassifier

XGBClassifier是一种基于梯度提升决策树算法的分类器模型,它使用了XGBoost库作为基础实现。XGBClassifier具有高效率、准确性和鲁棒性的优点,在数据科学和机器学习中应用广泛。

在使用XGBClassifier进行分类时,需要先进行数据清洗、特征工程和数据准备。然后,通过调用XGBClassifier实例,并设置参数来创建分类器模型。下面是一些常用的参数设置:

- learning_rate:学习率,控制每次迭代的步长,默认为0.1。

- n_estimators:决策树的个数,即迭代次数,默认为100。

- max_depth:最大树深度,控制模型的复杂度,默认为6。

- subsample:随机采样比例,用于训练每个决策树的子样本比例,默认为1。

- colsample_bytree:列采样比例,用于训练每个决策树的特征子集比例,默认为1。

- objective:损失函数,用于评估分类器的性能,默认为“binary:logistic”,用于二分类问题。

- random_state:随机种子,用于确保模型的可重复性。

创建模型后,可以使用fit()方法拟合数据进行模型训练。训练完成后,可以使用predict()方法进行预测,并使用score()方法计算模型在测试集上的准确度。文章来源地址https://www.toymoban.com/news/detail-678603.html

到了这里,关于量化特征贡献度函数:feature_importances_函数/LGBMClassifier/XGBClassifier的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于R语言的物种气候生态位动态量化与分布特征模拟

    目录 专题一 引言 专题二 数据获取与处理方法 专题三 组合物种分布模型(Ensemble Species Distribution Model)的原理与使用 专题四 拓展研究 专题五 结果分析与论文写作 专题六 案例分析 专题七 总结和展望 利用R语言进行物种气候生态位动态量化与分布特征模拟,不仅可以量化描

    2024年02月08日
    浏览(36)
  • R语言的物种气候生态位动态量化与分布特征模拟实践技术

    在全球气候快速变化的背景下,理解并预测生物种群如何应对气候变化,特别是它们的地理分布如何变化,已经变得至关重要。利用R语言进行物种气候生态位动态量化与分布特征模拟,不仅可以量化描述物种对环境的需求和适应性,预测物种的潜在生态位和分布,还可以模拟

    2024年02月13日
    浏览(49)
  • 【案例教程】基于R语言的物种气候生态位动态量化与分布特征模拟

    在全球气候快速变化的背景下,理解并预测生物种群如何应对气候变化,特别是它们的地理分布如何变化,已经变得至关重要。利用R语言进行物种气候生态位动态量化与分布特征模拟,不仅可以量化描述物种对环境的需求和适应性,预测物种的潜在生态位和分布,还可以模拟

    2024年02月11日
    浏览(37)
  • 【RT-DETR有效改进】轻量化CNN网络MobileNetV1改进特征提取网络

    👑欢迎大家订阅本专栏,一起学习RT-DETR👑     本篇文章给大家带来的改进机制是 MobileNetV1 ,其是专为移动和嵌入式视觉应用设计的轻量化网络结构。这些模型基于简化的架构,并利用深度可分离卷积构建轻量级深度神经网络,其 引入了两个简单的全局超参数 ,用于在延

    2024年01月19日
    浏览(47)
  • 【C++】类与对象——六个默认成员函数、构造函数的概念和特征,析构函数的概念和特征

      如果一个类中什么成员都没有,简称为空类。   空类中真的什么都没有吗?   并不是,任何类在什么都不写时,编译器会自动生成以下6个默认成员函数。 默认成员函数:用户没有显式实现,编译器会生成的成员函数称为默认成员函数。     构造函数是C++中的一

    2024年02月06日
    浏览(54)
  • 线性代数高级--二次型--特征值与特征向量--特征值分解--多元函数的泰勒展开

    目录 二次型 概念 示例   性质和特点 特征值与特征向量 概念 示例  注意  性质和特点  特征值分解 注意 多元函数的泰勒展开  回顾一元函数泰勒展开  多元函数的泰勒展开 概念 二次型是一个关于向量的二次多项式,通常用矩阵表示。 考虑一个n维向量x = [x₁, x₂, ...,

    2024年02月11日
    浏览(55)
  • C++ 学习 ::【基础篇:16】:C++ 类的基本成员函数:拷贝构造函数(认识、特征、注意点及典型使用场景)及其基本写法与调用

    本系列 C++ 相关文章 仅为笔者学习笔记记录,用自己的理解记录学习!C++ 学习系列将分为三个阶段: 基础篇、STL 篇、高阶数据结构与算法篇 ,相关重点内容如下: 基础篇 : 类与对象 (涉及C++的三大特性等); STL 篇 : 学习使用 C++ 提供的 STL 相关库 ; 高阶数据结构与算

    2024年02月08日
    浏览(47)
  • 贡献全球1/5核心突破,腾讯云第六年登上KVM贡献榜

    9 月 12 日,在全球虚拟化顶级技术峰会 KVM Forum 上, 2022 年度全球企业 KVM 开源贡献榜正式发布。腾讯云成为中国唯一连续六年入围的云厂商。 作为云计算的关键底层技术,云厂商需要利用 KVM 对物理机进行虚拟化,提供云端的池化算力。作为 KVM 虚拟化社区最重要、最权威的

    2023年04月18日
    浏览(42)
  • 一文全解经典机器学习算法之支持向量机SVM(关键词:SVM,对偶、间隔、支持向量、核函数、特征空间、分类)

    之前所介绍的逻辑回归是基于似然度的分类方法,通过对数据概率进行建模来得到软输出。但这种分类方法其实稍加“繁琐”,因为要 估计数据的概率分布作为中间步骤 。这就像当一个人学习英语时,他只要直接报个班或者自己看书就行了,而不需要先学习诘屈聱牙的拉丁

    2024年02月03日
    浏览(63)
  • 开源贡献难吗?

    本文整理自字节跳动 Flink SQL 技术负责人李本超在 CommunityOverCode Asia 2023 上的 Keynote 演讲,李本超根据自己在开源社区的贡献经历,基于他在贡献开源社区过程中的一些小故事和思考,如何克服困难,在开源社区取得突破,并且在工作和开源贡献之间取得平衡的相关内容,跟大

    2024年02月08日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包