结果部署是机器学习项目中的最后一步,也是最重要的步骤之一。选
定算法之后,对算法训练生成模型,并部署到生产环境上,以便利用机器学习解决实际问题。模型生成之后,也需要定期对模型进行更新,使模型处于最新、最有效的状态,通常建议
3~6个月更新一次模型。
持久化加载模型
找到一个能够生成高准确度模型的算法不是机器学习最后的步骤,在实际的项目中,需要将生成的模型序列化,并将其发布到生产环境。当有新数据出现时,需要反序列化已保存的模型,然后用其预测新的数据。接下来将介绍在Python中如何序列化和反序列化scikit-learn的模型。
本章内容将包括以下几个方面:
- 模型序列化和重用的重要性。
- 如何通过pickle来序列化和反序列化机器学习的模型。
- 如何通过joblib来序列化和反序列化机器学习的模型。
通过pickle序列化和反序列化机器学习的模型
pickle是标准的Python序列化的方法,可以通过它来序列化机器学习算法生成的模型,并将其保存到文件中。当需要对新数据进行预测时,将保存在文件中的模型反序列化,并用其来预测新数据的结果。
下面给出一个根据 Pima Indians数据集训练逻辑回归算法生成的一个模型,并将其序列化到文件,然后反序列化这个模型的例子。在机器学习项目中,当模型训练需要花费大量的时间时,模型序列化是尤为重要的。
代码如下:
import pickle
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
#数据预处理
path = 'D:\down\\archive\\diabetes.csv'
data = pd.read_csv(path)
#打印标签名称
print(data.columns[0:8])
#将数据转成数组
array = data.values
#分割数据,去掉最后一个标签
X = array[:, 0:8]
Y = array[:, 8]
test_size = 0.33
seed = 4
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)
model = LogisticRegression()
model.fit(X_train, Y_train)
#保存模型
filename = 'finalized_model.sav'
with open(filename, 'wb') as f:
pickle.dump(model, f)
#加载模型
with open(filename, 'rb') as f:
#模型反序列化
loaded_model = pickle.load(f)
result = loaded_model.score(X_test, Y_test)
print("算法评估结果:%.3f%%" % (result * 100.0))
运行结果:文章来源:https://www.toymoban.com/news/detail-679303.html
算法评估结果:80.709%
同时也会生成模型文件文章来源地址https://www.toymoban.com/news/detail-679303.html
到了这里,关于机器学习基础15-模型保存的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!