【IMX6ULL驱动开发学习】11.Linux之SPI驱动

这篇具有很好参考价值的文章主要介绍了【IMX6ULL驱动开发学习】11.Linux之SPI驱动。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

参考:驱动程序开发:SPI设备驱动_spi驱动_邓家文007的博客-CSDN博客

目录

一、SPI驱动简介

1.1 SPI架构概述

1.2 SPI适配器(控制器)数据结构

1.2 SPI设备数据结构

1.3 SIP设备驱动

1.4 接口函数

 二、SPI驱动模板


一、SPI驱动简介

SPI驱动框架和I2C驱动框架是十分相似的,不同的是因为SPI是通过片选引脚来选择从机设备的,因此SPI不再需要像I2C那样先进行寻址操作(查询从机地址)后再进行对应寄存器的数据交互,并且SPI是全双工通信,通信速率要远高于I2C。

但是SPI显然占用的硬件资源也比I2C要多,并且SPI没有了像I2C那样指定的流控制(例如开始、停止信号)和没有了像I2C应当机制(导致无法确认数据是否接收到了)。

1.1 SPI架构概述

Linux的SPI体系结构可以分为3个组成部分:

  • spi核心(SPI Core):SPI Core是Linux内核用来维护和管理spi的核心部分,SPI Core提供操作接口函数,允许一个spi master,spi driver和spi device初始化时在SPI Core中进行注册,以及退出时进行注销。
  • spi控制器驱动或适配器驱动(SPI Master Driver):SPI Master针对不同类型的spi控制器硬件,实现spi总线的硬件访问操作。SPI Master 通过接口函数向SPI Core注册一个控制器。
  • spi设备驱动(SPI Device Driver):SPI Driver是对应于spi设备端的驱动程序,通过接口函数向SPI Core进行注册,SPI Driver的作用是将spi设备挂接到spi总线上。

Linux的软件架构图如下图所示: 

【IMX6ULL驱动开发学习】11.Linux之SPI驱动,Linux驱动开发,驱动开发,学习,linux,嵌入式硬件,交互

1.2 SPI适配器(控制器)数据结构

参考内核文件:include/linux/spi/spi.h

Linux中使用spi_master结构体描述SPI控制器,里面最重要的成员就是transfer函数指针:

【IMX6ULL驱动开发学习】11.Linux之SPI驱动,Linux驱动开发,驱动开发,学习,linux,嵌入式硬件,交互

transfer 函数,和 i2c_algorithm 中的 master_xfer 函数一样,控制器数据传输函数。
transfer_one_message 函数,也用于 SPI 数据发送,用于发送一个 spi_message,SPI 的数据会打包成 spi_message,然后以队列方式发送出去。

1.2 SPI设备数据结构

参考内核文件:include/linux/spi/spi.h

Linux中使用spi_device结构体描述SPI设备,里面记录有设备的片选引脚、频率、挂在哪个SPI控制器下面:
【IMX6ULL驱动开发学习】11.Linux之SPI驱动,Linux驱动开发,驱动开发,学习,linux,嵌入式硬件,交互

1.3 SIP设备驱动

参考内核文件:include/linux/spi/spi.h

Linux中使用spi_driver结构体描述SPI设备驱动:

【IMX6ULL驱动开发学习】11.Linux之SPI驱动,Linux驱动开发,驱动开发,学习,linux,嵌入式硬件,交互

可以看出,spi_driver 和 i2c_driver、 platform_driver 基本一样,当 SPI 设备和驱动匹配成功以后 probe 函数就会执行。 

比如:spi1下面接有两个设备(有两个片选信号),我们就可以把设备放入子节点里面,子节点将有内核解析后转换成一个spi_device,与某一个spi_driver匹配后,spi_driver里的probe函数就被调用,我们在probe函数里就可以注册字符设备驱动程序。

【IMX6ULL驱动开发学习】11.Linux之SPI驱动,Linux驱动开发,驱动开发,学习,linux,嵌入式硬件,交互

1.4 接口函数

函数原形:

  • 简易函数
/**
 * SPI同步写
 * @spi: 写哪个设备
 * @buf: 数据buffer
 * @len: 长度
 * 这个函数可以休眠
 *
 * 返回值: 0-成功, 负数-失败码
 */
static inline int
spi_write(struct spi_device *spi, const void *buf, size_t len);

/**
 * SPI同步读
 * @spi: 读哪个设备
 * @buf: 数据buffer
 * @len: 长度
 * 这个函数可以休眠
 *
 * 返回值: 0-成功, 负数-失败码
 */
static inline int
spi_read(struct spi_device *spi, void *buf, size_t len);


/**
 * spi_write_then_read : 先写再读, 这是一个同步函数
 * @spi: 读写哪个设备
 * @txbuf: 发送buffer
 * @n_tx: 发送多少字节
 * @rxbuf: 接收buffer
 * @n_rx: 接收多少字节
 * 这个函数可以休眠
 * 
 * 这个函数执行的是半双工的操作: 先发送txbuf中的数据,在读数据,读到的数据存入rxbuf
 *
 * 这个函数用来传输少量数据(建议不要操作32字节), 它的效率不高
 * 如果想进行高效的SPI传输,请使用spi_{async,sync}(这些函数使用DMA buffer)
 *
 * 返回值: 0-成功, 负数-失败码
 */
extern int spi_write_then_read(struct spi_device *spi,
		const void *txbuf, unsigned n_tx,
		void *rxbuf, unsigned n_rx);

/**
 * spi_w8r8 - 同步函数,先写8位数据,再读8位数据
 * @spi: 读写哪个设备
 * @cmd: 要写的数据
 * 这个函数可以休眠
 *
 *
 * 返回值: 成功的话返回一个8位数据(unsigned), 负数表示失败码
 */
static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd);

/**
 * spi_w8r16 - 同步函数,先写8位数据,再读16位数据
 * @spi: 读写哪个设备
 * @cmd: 要写的数据
 * 这个函数可以休眠
 *
 * 读到的16位数据: 
 *     低地址对应读到的第1个字节(MSB),高地址对应读到的第2个字节(LSB)
 *     这是一个big-endian的数据
 *
 * 返回值: 成功的话返回一个16位数据(unsigned), 负数表示失败码
 */
static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd);

/**
 * spi_w8r16be - 同步函数,先写8位数据,再读16位数据,
 *               读到的16位数据被当做big-endian,然后转换为CPU使用的字节序
 * @spi: 读写哪个设备
 * @cmd: 要写的数据
 * 这个函数可以休眠
 *
 * 这个函数跟spi_w8r16类似,差别在于它读到16位数据后,会把它转换为"native endianness"
 *
 * 返回值: 成功的话返回一个16位数据(unsigned, 被转换为本地字节序), 负数表示失败码
 */
static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd);
  •  复杂函数
/**
 * spi_async - 异步SPI传输函数,简单地说就是这个函数即刻返回,它返回后SPI传输不一定已经完成
 * @spi: 读写哪个设备
 * @message: 用来描述数据传输,里面含有完成时的回调函数(completion callback)
 * 上下文: 任意上下文都可以使用,中断中也可以使用
 *
 * 这个函数不会休眠,它可以在中断上下文使用(无法休眠的上下文),也可以在任务上下文使用(可以休眠的上下文) 
 *
 * 完成SPI传输后,回调函数被调用,它是在"无法休眠的上下文"中被调用的,所以回调函数里不能有休眠操作。
 * 在回调函数被调用前message->statuss是未定义的值,没有意义。
 * 当回调函数被调用时,就可以根据message->status判断结果: 0-成功,负数表示失败码
 * 当回调函数执行完后,驱动程序要认为message等结构体已经被释放,不能再使用它们。
 *
 * 在传输过程中一旦发生错误,整个message传输都会中止,对spi设备的片选被取消。
 *
 * 返回值: 0-成功(只是表示启动的异步传输,并不表示已经传输成功), 负数-失败码
 */
extern int spi_async(struct spi_device *spi, struct spi_message *message);

/**
 * spi_sync - 同步的、阻塞的SPI传输函数,简单地说就是这个函数返回时,SPI传输要么成功要么失败
 * @spi: 读写哪个设备
 * @message: 用来描述数据传输,里面含有完成时的回调函数(completion callback)
 * 上下文: 能休眠的上下文才可以使用这个函数
 *
 * 这个函数的message参数中,使用的buffer是DMA buffer
 *
 * 返回值: 0-成功, 负数-失败码
 */
extern int spi_sync(struct spi_device *spi, struct spi_message *message);


/**
 * spi_sync_transfer - 同步的SPI传输函数
 * @spi: 读写哪个设备
 * @xfers: spi_transfers数组,用来描述传输
 * @num_xfers: 数组项个数
 * 上下文: 能休眠的上下文才可以使用这个函数
 *
 * 返回值: 0-成功, 负数-失败码
 */
static inline int
spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
	unsigned int num_xfers);

 二、SPI驱动模板

spi_drv.c文章来源地址https://www.toymoban.com/news/detail-679478.html

#include <linux/spi/spi.h>
#include <linux/module.h>
#include <linux/poll.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>

/* 主设备号                                                                 */
static int major = 0;
static struct class *my_spi_class;

static struct spi_device *g_spi;

static DECLARE_WAIT_QUEUE_HEAD(gpio_wait);
struct fasync_struct *spi_fasync;


/* 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t spi_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	// int err;

	// struct spi_transfer msgs[2];

	/* 初始化 spi_transfer */

	// static inline int
    //   spi_sync_transfer(struct   spi_device *spi, struct spi_transfer *xfers,
	//   unsigned int num_xfers);

	/* copy_to_user  */
	
	return 0;
}

static ssize_t spi_drv_write(struct file *file, const char __user *buf, size_t size, loff_t *offset)
{
	//int err;

	/* copy_from_user  */


	// struct spi_transfer msgs[2];

	/* 初始化 spi_transfer */

	// static inline int
    //   spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
	//   unsigned int num_xfers);

	
	return 0;    
}


static unsigned int spi_drv_poll(struct file *fp, poll_table * wait)
{
	//printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	poll_wait(fp, &gpio_wait, wait);
	//return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
	return 0;
}

static int spi_drv_fasync(int fd, struct file *file, int on)
{
	if (fasync_helper(fd, file, on, &spi_fasync) >= 0)
		return 0;
	else
		return -EIO;
}


/* 定义自己的file_operations结构体                                              */
static struct file_operations spi_drv_fops = {
	.owner	 = THIS_MODULE,
	.read    = spi_drv_read,
	.write   = spi_drv_write,
	.poll    = spi_drv_poll,
	.fasync  = spi_drv_fasync,
};


static int spi_drv_probe(struct spi_device *spi)
{
	// struct device_node *np = client->dev.of_node;

	/* 记录spi_device */
	g_spi = spi;

	/* 注册字符设备 */
	/* 注册file_operations 	*/
	major = register_chrdev(0, "100ask_spi", &spi_drv_fops);  /* /dev/gpio_desc */

	my_spi_class = class_create(THIS_MODULE, "100ask_spi_class");
	if (IS_ERR(my_spi_class)) {
		printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
		unregister_chrdev(major, "100ask_spi");
		return PTR_ERR(my_spi_class);
	}

	device_create(my_spi_class, NULL, MKDEV(major, 0), NULL, "myspi"); /* /dev/myspi */
	
	return 0;
}

static int spi_drv_remove(struct spi_device *spi)
{
	/* 反注册字符设备 */
	device_destroy(my_spi_class, MKDEV(major, 0));
	class_destroy(my_spi_class);
	unregister_chrdev(major, "100ask_spi");

	return 0;
}

static const struct of_device_id myspi_dt_match[] = {
	{ .compatible = "100ask,spidev" },
	{},
};
static struct spi_driver my_spi_driver = {
	.driver = {
		   .name = "100ask_spi_drv",
		   .owner = THIS_MODULE,
		   .of_match_table = myspi_dt_match,
	},
	.probe = spi_drv_probe,
	.remove = spi_drv_remove,
};


static int __init spi_drv_init(void)
{
	/* 注册spi_driver */
	return spi_register_driver(&my_spi_driver);
}

static void __exit spi_drv_exit(void)
{
	/* 反注册spi_driver */
	spi_unregister_driver(&my_spi_driver);
}

/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */

module_init(spi_drv_init);
module_exit(spi_drv_exit);

MODULE_LICENSE("GPL");


到了这里,关于【IMX6ULL驱动开发学习】11.Linux之SPI驱动的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【IMX6ULL驱动开发学习】12.Linux SPI驱动实战:DAC驱动设计流程

    基础回顾: 【IMX6ULL驱动开发学习】10.Linux I2C驱动实战:AT24C02驱动设计流程_阿龙还在写代码的博客-CSDN博客 【IMX6ULL驱动开发学习】11.Linux之SPI驱动_阿龙还在写代码的博客-CSDN博客 查看芯片手册,有两种DAC数据格式,12位和16位,这里选用16位数据(2字节)编写驱动。  重点在

    2024年02月11日
    浏览(43)
  • 【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试

    目录 一、DHT11简介 1.1 DHT11模块硬件设计 1.2 DHT11模块软件设计 1.3 DHT11通讯协议 1.4 DHT11数据格式 二、相关代码 2.1 驱动代码 2.2 测试代码 2.3 上板子测试 DHT11是一款可测量温度和湿度的传感器。比如市面上一些空气加湿器,会测量空气中湿度,再根据测量结果决定是否继续加湿

    2024年02月12日
    浏览(33)
  • 【IMX6ULL驱动开发学习】22.IMX6ULL开发板读取ADC(以MQ-135为例)

    IMX6ULL一共有两个ADC,每个ADC都有八个通道,但他们共用一个ADC控制器 在imx6ull.dtsi文件中已经帮我们定义好了adc1的节点部分信息 注意 num-channels = 2; ,这个表示指定使用ADC1的两个通道,即通道1和通道2 如果你要使用多个ADC通道,修改这个值即可 配置ADC引脚的 pinctrl ,在自己的

    2024年02月12日
    浏览(46)
  • 【IMX6ULL驱动开发学习】15.IMX6ULL驱动开发问题记录(sleep被kill_fasync打断)

    发现问题的契机: 学习异步通知的时候,自己实现一个功能:按键控制蜂鸣器,同时LED灯在闪烁 结果:LED好像也同时被按键控制了 最后调试结果发现: 应用层的 sleep 被驱动层的 kill_fasync 打断,所以sleep没有执行完就重新进入下一次循环了 修改代码后解决该问题 解决逻辑就

    2024年02月13日
    浏览(42)
  • 【IMX6ULL驱动开发学习】08.IMX6ULL通过GPIO子系统函数点亮LED

    通过GPIO子系统函数点亮LED 1、GPIO子系统函数 1.1 确定 led 的GPIO标号,查看内核中的gpiochip 查看 gpiochip ,以正点原子的IMX6ULL阿尔法开发板为例 查看原理图,发现led接的引脚是 GPIO1_IO3,对应 /sys/kernel/debug/gpio 中的 gpiochip0 组,gpiochip0 组从0开始算起, 所以 GPIO1_IO3 对应的标号就

    2024年02月10日
    浏览(66)
  • 【IMX6ULL驱动开发学习】14.Linux驱动开发 - GPIO中断(设备树 + GPIO子系统)

    代码自取 【14.key_tree_pinctrl_gpios_interrupt】: https://gitee.com/chenshao777/imx6-ull_-drivers 主要接口函数: 1. of_gpio_count (获得GPIO的数量) 2. kzalloc (向内核申请空间) 3. of_get_gpio (获取GPIO子系统标号) 4. gpio_to_irq (根据GPIO子系统标号得到软件中断号) 5. request_irq (根据软件中断号

    2024年02月12日
    浏览(39)
  • 【IMX6ULL驱动开发学习】03.设置IMX6ULL开发板与虚拟机在同一网段(设置开发板静态IP)

    为什么要设置IMX6ULL与虚拟机通信? 因为要把在虚拟机下编译的文件传到IMX6ULL开发板上运行 设置好同一网段,可以互ping后,可以参考这篇博客,实现开发板与虚拟机的文件互传 IMX6ULL开发板与虚拟机互传文件 一、设置windows有线网卡 二、配置虚拟机双网卡(原本有一个NAT网卡

    2024年02月07日
    浏览(42)
  • 【IMX6ULL驱动开发学习】09.Linux驱动之GPIO中断(附SR501人体红外感应驱动代码)

    Linux驱动的GPIO中断编程主要有以下几个步骤: 1、 通过GPIO号获取 软件中断号 (中断编程不需要设置GPIO输入输出,当然申请GPIO,设置输入也没问题) 参数 含义 gpio GPIO引脚编号 2、 注册 中断处理函数 ,设置中断 触发方式 (上升沿、下降沿等) 参数 含义 irq 软件中断号(通过

    2024年02月11日
    浏览(45)
  • 【IMX6ULL驱动开发学习】21.Linux驱动之PWM子系统(以SG90舵机为例)

    首先在 imx6ull.dtsi 文件中已经帮我们定义好了一些pwm的设备树节点,这里以pwm2为例 我们要在设备树(.dts)文件中引用和使能该节点,同时指定好pwm映射到的GPIO引脚(即pinctrl子系统,我这里映射到了GPIO1_9上) 使用pwm 只需要在设备树节点中添加两条属性信息,如下所示 pwms :属

    2024年02月12日
    浏览(109)
  • 【IMX6ULL驱动开发学习】19.mmap内存映射

    mmap将一个文件或者其它对象映射进内存 ,使得应用层可以直接读取到驱动层的数据,无需通过copy_to_user函数 可以用于像LCD这样的外设, 需要读写大量数据的 一、应用层 mmap用法: 用open系统调用打开文件, 并返回描述符fd. 用mmap建立内存映射, 并返回映射首地址指针start. 对映

    2024年02月16日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包