机器学习笔记之优化算法(二十)牛顿法与正则化

这篇具有很好参考价值的文章主要介绍了机器学习笔记之优化算法(二十)牛顿法与正则化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

引言

本节我们介绍经典牛顿法在训练神经网络过程中的迭代步骤,并介绍正则化在牛顿法中的使用逻辑。

回顾:经典牛顿法及其弊端

经典牛顿法自身是一个典型的线搜索方法 ( Line-Search Method ) (\text{Line-Search Method}) (Line-Search Method)。它的迭代过程使用数学符号表示如下:
x k + 1 = x k + α k ⋅ P k x_{k+1} = x_k + \alpha_k \cdot \mathcal P_k xk+1=xk+αkPk
其中标量 α k \alpha_k αk表示当前第 k k k次迭代情况下的更新步长向量 P k \mathcal P_k Pk表示当前迭代步骤的更新方向。与梯度下降法区分的是,在经典牛顿法中:

  • 步长并不是我们关注的信息,我们通常设置 α k = 1 ( k = 1 , 2 , 3 , ⋯   ) \alpha_k = 1(k=1,2,3,\cdots) αk=1(k=1,2,3,),从而迭代结果 x k + 1 x_{k+1} xk+1可看作是关于方向变量 P \mathcal P P的函数
    P k \mathcal P_k Pk则表示当前迭代步骤的最优更新方向。
    { x k + 1 = x k + P P k = arg ⁡ min ⁡ P f ( x k + 1 ) = arg ⁡ min ⁡ P f ( x k + P ) \begin{cases} \begin{aligned} x_{k+1} & = x_k + \mathcal P \\ \mathcal P_k & = \mathop{\arg\min}\limits_{\mathcal P} f(x_{k+1}) \\ & = \mathop{\arg\min}\limits_{\mathcal P} f(x_k + \mathcal P) \end{aligned} \end{cases} xk+1Pk=xk+P=Pargminf(xk+1)=Pargminf(xk+P)
  • 关于目标函数 f ( ⋅ ) f(\cdot) f(),我们对其要求是: f ( ⋅ ) f(\cdot) f()至少二阶可微。这意味着 Hessian Matrix ⇒ ∇ 2 f ( ⋅ ) \text{Hessian Matrix} \Rightarrow \nabla^2 f(\cdot) Hessian Matrix2f()存在。因此对目标函数 f ( x k + P ) f(x_k + \mathcal P) f(xk+P)进行二阶泰勒展开
    f ( x k + P ) = ϕ ( P ) = f ( x k ) + 1 1 ! [ ∇ f ( x k ) ] T P + 1 2 ! P T [ ∇ 2 f ( x k ) ] ⋅ P + O ( ∥ P ∥ 2 ) f(x_k + \mathcal P) = \phi(\mathcal P) = f(x_k) + \frac{1}{1!} [\nabla f(x_k)]^T \mathcal P + \frac{1}{2!} \mathcal P^T [\nabla^2 f(x_k)] \cdot \mathcal P + \mathcal O(\|\mathcal P\|^2) f(xk+P)=ϕ(P)=f(xk)+1!1[f(xk)]TP+2!1PT[2f(xk)]P+O(P2)
    忽略掉高阶无穷小 O ( ∥ P ∥ 2 ) \mathcal O(\|\mathcal P\|^2) O(P2),通过 ∇ ϕ ( P ) ≜ 0 \nabla \phi(\mathcal P) \triangleq 0 ϕ(P)0来求解 P k \mathcal P_k Pk,使 ϕ ( P k ) \phi(\mathcal P_k) ϕ(Pk)取得最小值:
    ∇ ϕ ( P ) ≜ 0 ⇒ ∇ 2 f ( x k ) ⋅ P = − ∇ f ( x k ) \nabla \phi(\mathcal P) \triangleq 0 \Rightarrow \nabla^2 f(x_k) \cdot \mathcal P = -\nabla f(x_k) ϕ(P)02f(xk)P=f(xk)
    我们称该方程组牛顿方程
    • 如果 ∇ 2 f ( ⋅ ) \nabla^2 f(\cdot) 2f() x k x_k xk出的 Hessian Matrix ⇒ ∇ 2 f ( x k ) \text{Hessian Matrix} \Rightarrow \nabla^2 f(x_k) Hessian Matrix2f(xk)正定矩阵,那么:本次迭代步骤存在合适 P k \mathcal P_k Pk,使 ϕ ( P k ) \phi(\mathcal P_k) ϕ(Pk)达到最小值
      需要注意的是,这仅仅是当前迭代步骤的最小值,而不是全局最小值。
      P k = − [ ∇ 2 f ( x k ) ] − 1 ∇ f ( x k ) \mathcal P_k = - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k) Pk=[2f(xk)]1f(xk)
      并且解 P k \mathcal P_k Pk描述的方向一定是下降方向
    • 相反,如果 ∇ 2 f ( x k ) \nabla^2 f(x_k) 2f(xk)不是正定矩阵,那么至少说:无法直接求解,方程组 ∇ 2 f ( x k ) ⋅ P = − ∇ f ( x k ) \nabla^2 f(x_k) \cdot \mathcal P = -\nabla f(x_k) 2f(xk)P=f(xk)的解 P k \mathcal P_k Pk的解。

牛顿法:算法步骤

训练神经网络的方法中,牛顿法二阶近似方法的代表。这里为了简单表述,将上面提到的目标函数 f ( ⋅ ) f(\cdot) f()具象化为经验风险 ( Empirical Risk ) (\text{Empirical Risk}) (Empirical Risk)
J ( θ ) = E P d a t a { L [ G ( x ( i ) ; θ ) , y ( i ) ] } = 1 N ∑ i = 1 N L [ G ( x ( i ) ; θ ) , y ( i ) ] P d a t a = { ( x ( i ) , y ( i ) ) } i = 1 N \begin{aligned} \mathcal J(\theta) & = \mathbb E_{\mathcal P_{data}} \left\{\mathcal L[\mathcal G(x^{(i)};\theta),y^{(i)}]\right\} \\ & = \frac{1}{N} \sum_{i=1}^N \mathcal L [\mathcal G(x^{(i)};\theta),y^{(i)}] \end{aligned}\quad P_{data} = \{(x^{(i)},y^{(i)})\}_{i=1}^N J(θ)=EPdata{L[G(x(i);θ),y(i)]}=N1i=1NL[G(x(i);θ),y(i)]Pdata={(x(i),y(i))}i=1N
其中 θ \theta θ可看作是需要学习的模型参数 G ( ⋅ ) \mathcal G(\cdot) G()可看作是模型关于 x x x的预测函数 L ( ⋅ ) \mathcal L(\cdot) L()可看作是损失函数,描述预测结果与真实标签的差异性信息。

假设 θ 0 \theta_0 θ0表示当前迭代过程的起始位置,是已知项;而 θ \theta θ是一个变量,描述当前迭代过程结束后的参数位置这里直接使用: θ − θ 0 \theta -\theta_0 θθ0表示当前迭代步骤的更新方向,对 J ( θ ) \mathcal J(\theta) J(θ)进行二阶泰勒展开

  • 实际上,书中 θ − θ 0 \theta - \theta_0 θθ0本身就将步长 α = 1 \alpha = 1 α=1包含在内。
  • 这里关于 J ( θ ) \mathcal J(\theta) J(θ)高于二阶的高阶无穷小直接省略掉了~
  • 关于 Hessian Matrix ⇒ ∇ 2 J ( θ 0 ) \text{Hessian Matrix} \Rightarrow \nabla^2 \mathcal J(\theta_0) Hessian Matrix2J(θ0)直接使用 H \mathcal H H进行表示。
    J ( θ ) ≈ J ( θ 0 ) + 1 1 ! ( θ − θ 0 ) T ∇ θ J ( θ 0 ) + 1 2 ! ( θ − θ 0 ) T H ( θ − θ 0 ) \mathcal J(\theta) \approx \mathcal J(\theta_0) + \frac{1}{1!}(\theta - \theta_0)^T \nabla_{\theta} \mathcal J(\theta_0) + \frac{1}{2!}(\theta - \theta_0)^T \mathcal H (\theta - \theta_0) J(θ)J(θ0)+1!1(θθ0)TθJ(θ0)+2!1(θθ0)TH(θθ0)

依然令 ∇ J ( θ ) ≜ 0 \nabla \mathcal J(\theta) \triangleq 0 J(θ)0,有:
∇ J ( θ ) = ( 1 − 0 ) ⋅ ∇ J θ ( θ 0 ) + 1 2 ⋅ 2 ( θ − θ 0 ) ⋅ H ≜ 0 ⇒ H ( θ − θ 0 ) = − ∇ J θ ( θ 0 ) \begin{aligned} \nabla\mathcal J(\theta) & = (1 - 0) \cdot \nabla \mathcal J_{\theta}(\theta_0) + \frac{1}{2} \cdot 2 (\theta - \theta_0)\cdot \mathcal H \triangleq 0\\ & \Rightarrow \mathcal H(\theta - \theta_0) = -\nabla \mathcal J_{\theta}(\theta_0) \end{aligned} J(θ)=(10)Jθ(θ0)+212(θθ0)H0H(θθ0)=Jθ(θ0)
假设 H \mathcal H H正定的条件下,关于 θ \theta θ θ 0 \theta_0 θ0的递推关系表示如下:
θ = θ 0 − H − 1 ∇ θ J ( θ 0 ) \theta = \theta_0 - \mathcal H^{-1} \nabla_{\theta} \mathcal J(\theta_0) θ=θ0H1θJ(θ0)

基于递推关系,对应的算法步骤表示如下:

  • 初始化:初始参数 θ s t a r t \theta_{start} θstart以及包含 N N N个样本的训练数据集

  • While \text{While} While

    • 计算 ∇ θ J ( θ 0 ) \nabla_{\theta} \mathcal J(\theta_0) θJ(θ0)
      牛顿-莱布尼兹公式~,这是书上的表达。详细位置见末尾~
      ∇ θ J ( θ 0 ) = ∇ θ { 1 N ∑ i = 1 N L [ G ( x ( i ) ; θ 0 ) , y ( i ) ] } = 1 N ∇ θ ∑ i = 1 N L [ G ( x ( i ) ; θ 0 ) , y ( i ) ] \begin{aligned} \nabla_{\theta} \mathcal J(\theta_0) & = \nabla_{\theta} \left\{\frac{1}{N} \sum_{i=1}^N \mathcal L[\mathcal G(x^{(i)};\theta_0),y^{(i)}]\right\} \\ & = \frac{1}{N} \nabla_{\theta} \sum_{i=1}^N \mathcal L[\mathcal G(x^{(i)};\theta_0),y^{(i)}] \end{aligned} θJ(θ0)=θ{N1i=1NL[G(x(i);θ0),y(i)]}=N1θi=1NL[G(x(i);θ0),y(i)]
    • 计算 θ 0 \theta_0 θ0位置的 Hessian Matrix ⇒ H \text{Hessian Matrix} \Rightarrow \mathcal H Hessian MatrixH
      该公式同样也是书上描述。
      H = ∇ θ 2 J ( θ 0 ) = ∇ θ 2 { 1 N ∑ i = 1 N L [ G ( x ( i ) ; θ 0 ) , y ( i ) ] } = 1 N ∇ θ 2 ∑ i = 1 N L [ G ( x ( i ) ; θ 0 ) , y ( i ) ] \begin{aligned} \mathcal H & = \nabla_{\theta}^2 \mathcal J(\theta_0) \\ & = \nabla_{\theta}^2 \left\{\frac{1}{N} \sum_{i=1}^N \mathcal L[\mathcal G(x^{(i)};\theta_0),y^{(i)}]\right\} \\ & = \frac{1}{N} \nabla_{\theta}^2 \sum_{i=1}^N \mathcal L[\mathcal G(x^{(i)};\theta_0),y^{(i)}] \end{aligned} H=θ2J(θ0)=θ2{N1i=1NL[G(x(i);θ0),y(i)]}=N1θ2i=1NL[G(x(i);θ0),y(i)]
    • 计算 Hessian Matrix \text{Hessian Matrix} Hessian Matrix的逆: H − 1 \mathcal H^{-1} H1
    • 计算变量 θ \theta θ变化量 Δ θ \Delta \theta Δθ
      Δ θ = − H − 1 ∇ θ J ( θ 0 ) \Delta \theta = -\mathcal H^{-1} \nabla_{\theta} \mathcal J(\theta_0) Δθ=H1θJ(θ0)
    • 对变量 θ \theta θ进行更新:
      θ = θ 0 + Δ θ \theta = \theta_0 + \Delta \theta θ=θ0+Δθ
  • End While \text{End While} End While

迭代过程中可能出现的问题

观察上述迭代步骤,一个核心问题是:该算法必须建立在迭代过程中,各步骤的 θ \theta θ对应的 Hessian Matrix \text{Hessian Matrix} Hessian Matrix必须均是正定,否则 H − 1 \mathcal H^{-1} H1无法求解。在凸函数 VS \text{VS} VS强凸函数中介绍过关于强凸函数的二阶条件:如果函数 f ( ⋅ ) f(\cdot) f()二阶可微,有
其中 I \mathcal I I表示单位矩阵
f ( ⋅ ) is m-Strong Convex ⇔ ∇ 2 f ( x ) ≽ m ⋅ I f(\cdot) \text{is m-Strong Convex} \Leftrightarrow \nabla^2 f(x) \succcurlyeq m \cdot \mathcal I f()is m-Strong Convex2f(x)mI
也就是说:要想 H = ∇ θ 2 J ( θ 0 ) \mathcal H = \nabla_{\theta}^2 \mathcal J(\theta_0) H=θ2J(θ0)正定,必然需要目标函数 J ( θ ) \mathcal J(\theta) J(θ) θ = θ 0 \theta= \theta_0 θ=θ0不仅是凸的,甚至是强凸

但在深度学习中,目标函数的表面由于特征较多,从而在局部呈现非凸的情况。例如鞍点二阶梯度函数 ∇ θ 2 J ( θ ) \nabla_{\theta}^2 \mathcal J(\theta) θ2J(θ)在该处的特征值并不都是正的,也就是说:鞍点处的 Hessian Matrix \text{Hessian Matrix} Hessian Matrix可能不是正定的,从而可能导致在该点出迭代过程中选择的 θ \theta θ,使得更新方向 θ − θ 0 \theta - \theta_0 θθ0是个错误的方向

正则化 Hessian Matrix \text{Hessian Matrix} Hessian Matrix与相应问题

上述情况可以使用正则化 Hessian Matrix \text{Hessian Matrix} Hessian Matrix来避免。一种常用的正则化策略是 Hessian Matrix \text{Hessian Matrix} Hessian Matrix加上一个对角线元素均为 α \alpha α的对角阵
θ = θ 0 − [ ∇ θ 2 J ( θ 0 ) ⏟ H + α ⋅ I ] − 1 ∇ θ J ( θ 0 ) \theta = \theta_0 - \left[\underbrace{\nabla_{\theta}^2 \mathcal J(\theta_0)}_{\mathcal H} + \alpha \cdot \mathcal I\right]^{-1} \nabla_{\theta} \mathcal J(\theta_0) θ=θ0 H θ2J(θ0)+αI 1θJ(θ0)
这种操作我们早在正则化与岭回归中就已介绍过。由于 Hessian Matrix ⇒ H \text{Hessian Matrix} \Rightarrow \mathcal H Hessian MatrixH至少是实对称矩阵,那么必然有:
H = Q Λ Q T Q Q T = Q T Q = I \mathcal H = \mathcal Q\Lambda \mathcal Q^T \quad \mathcal Q\mathcal Q^T = \mathcal Q^T\mathcal Q = \mathcal I H=QΛQTQQT=QTQ=I
并且 λ I = Q ( λ I ) Q T \lambda \mathcal I = \mathcal Q(\lambda \mathcal I) \mathcal Q^T λI=Q(λI)QT,从而 H + λ ⋅ I \mathcal H + \lambda \cdot \mathcal I H+λI可表示为:
H + λ ⋅ I = Q Λ Q T + Q ( λ I ) Q T = Q ( Λ + λ I ) Q T \begin{aligned} \mathcal H + \lambda \cdot \mathcal I & = \mathcal Q \Lambda\mathcal Q^T + \mathcal Q(\lambda \mathcal I) \mathcal Q^T \\ & = \mathcal Q(\Lambda + \lambda \mathcal I) \mathcal Q^T \end{aligned} H+λI=QΛQT+Q(λI)QT=Q(Λ+λI)QT
这相当于: H \mathcal H H的所有特征值加上一个正值 α \alpha α
相比于最小二乘法模型参数 W \mathcal W W的矩阵形式表达 W = ( X T X ) − 1 X T Y \mathcal W = (\mathcal X^T \mathcal X)^{-1} \mathcal X^T \mathcal Y W=(XTX)1XTY, H \mathcal H H可能更不稳定。因为 X T X \mathcal X^T\mathcal X XTX必然是半正定的,但 H \mathcal H H中的特征值有可能是

由于 H \mathcal H H中的特征值有可能是的,甚至是负定矩阵。如果 H \mathcal H H中存在特征值负的很厉害的情况下(存在很强的负曲率),我们需要增大 α \alpha α结果来抵消负特征值。如果 α \alpha α持续增大,对应特征值可能会被 α \alpha α主导。从而导致迭代步骤选择的方向收敛到 1 α × \begin{aligned}\frac{1}{\alpha} \times\end{aligned} α1×普通梯度

使用牛顿法训练大型的神经网络,更多还受限于计算负担。由于 H ∈ R p × p \mathcal H \in \mathbb R^{p \times p} HRp×p,其中 p p p表示样本特征维度,求解 H − 1 \mathcal H^{-1} H1时间复杂度 O ( k 3 ) \mathcal O(k^3) O(k3)。并且由于迭代过程中随着 θ \theta θ的变化,因而需要每次迭代过程都要计算对应 H − 1 \mathcal H^{-1} H1。因而,最终结果是:只有少量参数的神经网络,才能在实际中使用牛顿法进行训练。

相关参考:
《深度学习》(花书)P190 - 8.6 二阶近似方法文章来源地址https://www.toymoban.com/news/detail-679505.html

到了这里,关于机器学习笔记之优化算法(二十)牛顿法与正则化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器人中的数值优化(七)——修正阻尼牛顿法

       本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会

    2024年02月09日
    浏览(35)
  • 机器人中的数值优化(十一)——高斯牛顿法、LMF方法、Dogleg方法

       本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会

    2024年02月09日
    浏览(44)
  • 最优化方法-牛顿法一维搜索

    导言: 在最优化问题中,找到函数的最小值或最大值是一个重要的任务。牛顿法是一种经典的迭代方法,常用于优化问题的求解。本文将详细介绍最优化方法中的牛顿法一维搜索,包括其基本原理、算法步骤以及应用场景。 牛顿法,也称为牛顿-拉夫逊方法,是一种迭代的优

    2024年02月06日
    浏览(38)
  • 【最优化理论】牛顿法+Matlab代码实现

    牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。 多数方程不存在求根公式,因此求精确根非常困难,甚至不可解,从而寻找方程的近似根就显得特别重要。方法使用

    2023年04月09日
    浏览(45)
  • 随手笔记——如何手写高斯牛顿法

    将演示如何手写高斯牛顿法 注: 该部分仅用于学习使用,如有侵权,请联系!

    2024年02月16日
    浏览(40)
  • 【Matlab算法】牛顿法(Newton‘s Method)(附MATLAB完整代码)

    牛顿法 (Newton’s Method) 是一种迭代优化算法,用于求解无约束优化问题中的局部最小值。它通过使用目标函数的二阶导数信息来逼近最优解,并在每次迭代中更新当前估计的最优解。以下是关于牛顿法的详细描述: 初始化参数:选择一个初始点 x ( 0 ) x^{(0)} x ( 0 ) 作为优化的起

    2024年01月16日
    浏览(37)
  • 基于确定性最大似然算法 DML 的 DoA 估计,用牛顿法实现(附 MATLAB 源码)

    本文首次在公众号【零妖阁】上发表,为了方便阅读和分享,我们将在其他平台进行自动同步。由于不同平台的排版格式可能存在差异,为了避免影响阅读体验,建议如有排版问题,可前往公众号查看原文。感谢您的阅读和支持! 在 DoA 估计中,最大似然方法主要分为 确定性

    2024年02月17日
    浏览(45)
  • 机器学习笔记之优化算法(一)无约束优化概述

    从本节开始,将介绍 优化算法 ( Optimization Algorithm ) (text{Optimization Algorithm}) ( Optimization Algorithm ) 。 基于支持向量机 ( Support Vector Machine,SVM ) (text{Support Vector Machine,SVM}) ( Support Vector Machine,SVM ) 最大间隔分类器 的朴素思想: 从能够将所有样本点 正确分类 的直线中找到 满足

    2024年02月15日
    浏览(41)
  • 机器学习笔记之优化算法(十)梯度下降法铺垫:总体介绍

    从本节开始,将介绍 梯度下降法 ( Gradient Descent,GD ) (text{Gradient Descent,GD}) ( Gradient Descent,GD ) 。 线搜索方法作为一种常见优化问题的 策略 ,该方法的特点是: 其迭代过程中,将 数值解 的方向和步长分开执行 。对应 数学符号 表达如下: 其中 P k mathcal P_k P k ​ 是一个向量

    2024年02月13日
    浏览(41)
  • 牛顿法及Python实现

    目录 1 原理 2 牛顿法求解步骤 3 牛顿法的几何解释 4 案例Python实现 牛顿法是基于泰勒公式来实现的。泰勒公式的意义:如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。 设在某邻域内n+1阶可导,则的泰勒展开

    2024年02月06日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包