【Linux】socket编程(二)

这篇具有很好参考价值的文章主要介绍了【Linux】socket编程(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

前言 

TCP通信流程 

TCP通信的代码实现

tcp_server.hpp编写

tcp_server.cc服务端的编写

tcp_client.cc客户端的编写

整体代码


前言 

        上一章我们主要讲解了UDP之间的通信,本章我们将来讲述如何使用TCP来进行网络间通信,主要是使用socket API进行代码的实现。

        我们一共讲了5个socket API接口,分别为socket,bind,listen,accept,connect.但我们在讲解UDP通信时,只使用了socket和bind这两个接口就完成了。而TCP通信会使用后面这三个接口,我们将分别讲解.


TCP通信流程 

        同样地,TCP通信分为服务器端和客户端,它们的流程分别如下:

服务端通信流程:

  1. 创建套接字:使用socket函数创建一个套接字,指定协议族为AF_INET(IPv4)或AF_INET6(IPv6),指定类型为SOCK_STREAM(TCP)。

  2. 绑定套接字:使用bind函数将套接字与服务器的IP地址和端口号绑定在一起。这样服务器将使用指定的IP地址和端口号进行监听。

  3. 监听连接请求:使用listen函数开始监听连接请求。指定参数backlog,表示允许在队列中等待的最大连接数。

  4. 接受连接请求:使用accept函数接受客户端的连接请求。该函数会阻塞程序,直到有客户端连接时才返回一个新的套接字,用于与客户端进行通信。(新的套接字和旧套接字区别:新套接字负责服务建立的连接,包括通信等,旧套接字则一直负责监听连接.)

  5. 通信:使用新的套接字进行通信。可以使用readwrite函数进行数据的接收和发送。

  6. 关闭连接:当通信结束后,使用close函数关闭套接字,释放资源。

客户端通信流程:

  1. 创建套接字:使用socket函数创建一个套接字,指定协议族为AF_INET(IPv4)或AF_INET6(IPv6),指定类型为SOCK_STREAM(TCP)。

  2. 连接服务器:使用connect函数连接到服务器的IP地址和端口号。如果连接成功,返回0;否则返回错误码。

  3. 通信:使用已连接的套接字进行数据的发送和接收,可以使用readwrite函数。

  4. 关闭连接:当通信结束后,使用close函数关闭套接字,释放资源。


TCP通信的代码实现

依然是三个文件,分别为tcp_server.hpp(用来封装tcp socket),tcp_server.cc(服务器通信代码),tcp_client.cc(客户端通信代码).

tcp_server.hpp编写

首先我们要编写tcp_server.hpp,首先第一个接口initServer初始化服务端. 一共分为三步:

  • 1.创建套接字

利用socket函数创建新的套接字,并判断是否成功:

        listensock = socket(AF_INET, SOCK_STREAM, 0);
        if (listensock < 0)
        {
            logMessage(FATAL, "%d:%s", errno, strerror(errno));
            exit(2);
        }
        logMessage(NORMAL, "create sock success,  listensock: %d", listensock);
  • 2.bind绑定

        bind将套接字和特定的ip和地址绑定在一起.用法我们上一章也说了,先创建一个sockaddr_in结构体,然后填入相关的数据:sin_family(协议族 AF_INET(IPv4)或AF_INET6(IPv6)),sin_port(端口号),sin_arr.s_addr(ip地址),然后再bind绑定并判断是否成功,代码如下:

        struct sockaddr_in local;
        memset(&local, 0, sizeof local);
        local.sin_family = AF_INET;
        local.sin_port = htons(_port);
        local.sin_addr.s_addr = _ip.empty() ? INADDR_ANY : inet_addr(_ip.c_str());

        if (bind(listensock, (struct sockaddr *)&local, sizeof local) < 0)
        {
            logMessage(FATAL, "bind error", errno, strerror(errno));
            exit(3);
        }
  • 3.listen监听

        listen监听是否有新的连接,TCP与UDP不同的是,当客户端和服务端正式通信的时候,需要先建立连接,而UDP直接发送数据。所以要listen来监听是否有新链接.

        代码如下:

        // 3.因为TCP是面向连接的,意味着当我们正式通信的时候,需要先建立连接
        //第二个参数我们在讲TCP协议时会详细讲解,这里先暂且设为20
        if (listen(listensock, gbacklog) < 0)
        {
            logMessage(FATAL, "listen error", errno, strerror(errno));
            exit(3);
        }
        logMessage(NORMAL, "init server success");

第二个接口Start(),该接口主要负责获取连接,并进行通信.共分为两步:

  • accept获取到客户端连接

        这个我们同样的需要创建一个sockaddr_in结构体,用来存储客户端的连接信息,然后接收新的套接字,这个套接字是接下来我们通信要使用的。

            struct sockaddr_in src;
            socklen_t len = sizeof src;
            //servicesock(未来真正进行IO) vs listensock(主要任务:获取新链接)
            int servicesock = accept(listensock, (struct sockaddr *)&src, &len);
            if (servicesock < 0)
            {
                logMessage(ERROR, "accept error", errno, strerror(errno));
            }
  • 通信流程

这里可以提供两个版本的:一个是单进程版,即每一次只能处理一个客户端.

另一个是 多进程版,通过创建子进程来实现对多个客户端处理.

  • 单进程版

        紧接着上面说的,我们获取到客户端的连接信息后,我们需要对其进行解析,得到其ip地址和端口号:

            uint16_t client_port = ntohs(src.sin_port);//获得端口号
            string client_ip = inet_ntoa(src.sin_addr);//获得ip
            logMessage(NORMAL, "Link success, %d | %s : %d\n", servicesock,     client_ip.c_str(), client_port);

        然后直接执行对应的通信函数即可:

 service(servicesock,client_ip,client_port);
  • 多进程版: 

        利用fork函数实现,代码如下:后面的服务端通信和客户端通信都不用改动

            pid_t id = fork();
            assert(id != -1);
            if(id == 0)
            {
                //子进程
                close(listensock);
                service(servicesock,client_ip,client_port);
                exit(0);//僵尸状态
            }
            close(servicesock);

        通信函数service的实现:我们从sock中读取消息,客户端没有发消息时,服务端会阻塞在这里等待用户的输入。

static void service(int sock,const string& clientip,const uint16_t& clientport)
{
    //echo server
    char buffer[1024];
    memset(buffer, 0, sizeof(buffer));
    while(true)
    {
        //read && write
        ssize_t s = read(sock,buffer,sizeof buffer-1);
        if(s > 0)
        {
            buffer[s] = 0;//将发过来的数据当做字符串
            cout << clientip << " : " << clientport << "# "<< buffer << endl;
        }
        else if(s== 0)//对端链接关闭
        {
            logMessage(NORMAL,"%s : %d shutdown, me too!",clientip.c_str(),clientport);
            break;
        }
        else
        {
            logMessage(ERROR, "read socket error, %d:%s", errno, strerror(errno));
            break;
        }
        write(sock,buffer,strlen(buffer));
    }
    close(sock);
}

tcp_server.cc服务端的编写

这个就很简单了,只需要调用initServer初始化和Start开始就行了.

#include "tcp_server.hpp"
#include <memory>

static void usage(string proc)
{
    cout << "Usage: " << proc << "ServerPort\n" << endl;
}

//./tcp_server port
int main(int argc, char* argv[])
{
    if(argc != 2)
    {
        usage(argv[0]);
        exit(1);
    }
    uint16_t port = atoi(argv[1]);
    unique_ptr<TcpServer> svr(new TcpServer(port));

    svr->initServer();
    svr->Start();

    return 0;
}

tcp_client.cc客户端的编写

  • 创建套接字:
    int sock = socket(AF_INET, SOCK_STREAM, 0);
  • 调用connect与服务端链接:利用命令行参数,将用户输入的ip地址和port端口号获取到,然后传入sockaddr_in结构体,最后进行connect
    uint16_t serverPort = atoi(argv[2]);
    string serverIp = argv[1];    

    struct sockaddr_in server;
    bzero(&server, sizeof server);
    server.sin_family = AF_INET;
    server.sin_port = htons(serverPort);
    server.sin_addr.s_addr = inet_addr(serverIp.c_str());
    if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0)
  • 进行通信(send和recv)

   TCP的发送和接收消息不同于UDP的sendto和recvfrom,而是send和recv。我们分别看一下函数的用法:

send:

ssize_t send(int sockfd, const void *buf, size_t len, int flags);
  • sockfd:发送数据的套接字描述符。即想谁发送
  • buf:指向要发送数据的缓冲区的指针。
  • len:要发送的数据的长度(以字节为单位)。
  • flags:附加选项,通常设为0。
  • 作用:send()函数用于将数据从发送端发送到接收端。它返回已发送的字节数,或者在出现错误时返回-1。可以通过设置flags参数来指定传输数据的特定选项,例如设置为MSG_DONTWAIT非阻塞发送等。

recv:

ssize_t recv(int sockfd, void *buf, size_t len, int flags);
  • sockfd:要接收数据的套接字描述符。即谁接收
  • buf:接收数据的缓冲区的指针。
  • len:接收数据的最大长度(以字节为单位)。
  • flags:附加选项,通常设为0。
  • 作用:recv()函数用于从套接字接收数据,并将其存储在指定的缓冲区中。它返回接收到的字节数,或者在出现错误时返回-1。可以通过设置flags参数来指定接收数据的特定选项,例如设置为MSG_DONTWAIT非阻塞接收等。

所以通信代码如下:

    while (true)
    {
        string line;
        cout << "Please Enter Message# ";
        getline(cin, line);
        send(sock, line.c_str(), line.size(), 0);
        char buffer[1024];
        ssize_t s = recv(sock, buffer, sizeof(buffer) - 1, 0);
        if (s > 0)
        {
            buffer[s] = 0;
            cout << "server echo# " << buffer << endl;
        }
        else if (s == 0)
        {
            break;
        }
        else
        {
            break;
        }
    }

至此我们的TCP通信就完成了.

当我们使用多进程通信时,可以有多个客户端同时向服务端发送消息:

【Linux】socket编程(二),linux,运维,服务器,网络,TCP

 至此,TCP的网络通信流程也完成了,这是完整的代码,可以直接 拷贝运行,可去掉logMessage相关的调试信息.

整体代码

注意运行服务器时,使用./tcp_server 端口号

运行客户端连接服务器时,使用./tcp_clinet 服务器ip 服务器端口号

tcp_server.hpp文件

#pragma once
#include <iostream>
#include <stdlib.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <memory>
#include <pthread.h>
#include <signal.h>
#include <cstring>
#include <ctype.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

using namespace std;

static void service(int sock,const string& clientip,const uint16_t& clientport)
{
    //echo server
    char buffer[1024];
    memset(buffer, 0, sizeof(buffer));
    while(true)
    {
        //read && write
        ssize_t s = read(sock,buffer,sizeof buffer-1);
        if(s > 0)
        {
            buffer[s] = 0;//将发过来的数据当做字符串
            cout << clientip << " : " << clientport << "# "<< buffer << endl;
        }
        else if(s== 0)//对端链接关闭
        {
            logMessage(NORMAL,"%s : %d shutdown, me too!",clientip.c_str(),clientport);
            break;
        }
        else
        {
            logMessage(ERROR, "read socket error, %d:%s", errno, strerror(errno));
            break;
        }
        write(sock,buffer,strlen(buffer));
    }
}

class TcpServer
{
public:
    const static int gbacklog = 20;

    TcpServer(uint16_t port, string ip = "")
        : _port(port), _ip(ip), listensock(-1)
    {
    }
    void initServer()
    {
        // 1.创建套接字
        listensock = socket(AF_INET, SOCK_STREAM, 0);
        if (listensock < 0)
        {
            logMessage(FATAL, "%d:%s", errno, strerror(errno));
            exit(2);
        }
        logMessage(NORMAL, "create sock success,  listensock: %d", listensock);
        // 2.bind
        struct sockaddr_in local;
        memset(&local, 0, sizeof local);
        local.sin_family = AF_INET;
        local.sin_port = htons(_port);
        local.sin_addr.s_addr = _ip.empty() ? INADDR_ANY : inet_addr(_ip.c_str());

        if (bind(listensock, (struct sockaddr *)&local, sizeof local) < 0)
        {
            logMessage(FATAL, "bind error", errno, strerror(errno));
            exit(3);
        }
        // 3.因为TCP是面向连接的,意味着当我们正式通信的时候,需要先建立连接
        if (listen(listensock, gbacklog) < 0)
        {
            logMessage(FATAL, "listen error", errno, strerror(errno));
            exit(3);
        }
        logMessage(NORMAL, "init server success");
    }
    void Start()
    {
        //version2 :signal(SIGCHLD,SIG_IGN); //对SIGCHLD,主动忽略SIGCHLD信号,子进程退出的时候,会自动释放自己的僵尸进程
        while (true)
        {
            // sleep(1);
            // 获取连接
            struct sockaddr_in src;
            socklen_t len = sizeof src;
            // sock(未来真正进行IO) and _sock(主要任务:获取新链接)
            int servicesock = accept(listensock, (struct sockaddr *)&src, &len);
            if (servicesock < 0)
            {
                logMessage(ERROR, "accept error", errno, strerror(errno));
            }
            // 获取连接成功
            uint16_t client_port = ntohs(src.sin_port);
            string client_ip = inet_ntoa(src.sin_addr);
            logMessage(NORMAL, "Link success, %d | %s : %d\n", servicesock, client_ip.c_str(), client_port);
            // 开始进行通信服务
           
            // version 1 -- 单进程循环 -- 只能一次处理一个客户端,处理完一个,才能处理下一个
            // 显然是不能被直接使用的?为什么?单进程.
            service(servicesock,client_ip,client_port);
            // version 2 -- 多进程版本 -- 创建子进程,
            // 让子进程给新的连接提供服务,子进程能不能打开父进程曾经打开的文件fd呢? 答案是当然可以!
            pid_t id = fork();
            assert(id != -1);
            if(id == 0)
            {
                //子进程
                close(listensock);
                service(servicesock,client_ip,client_port);
                exit(0);//僵尸状态
            }
            //父进程
            close(servicesock);
        }
    }
    ~TcpServer()
    {
    }

private:
    uint16_t _port;
    string _ip;
    int listensock;
    unique_ptr<ThreadPool<Task>> _threadpool_ptr;
};

tcp_server.cc文件

#include "tcp_server.hpp"
#include <memory>

static void usage(string proc)
{
    cout << "Usage: " << proc << "ServerPort\n" << endl;
}

//./tcp_server port
int main(int argc, char* argv[])
{
    if(argc != 2)
    {
        usage(argv[0]);
        exit(1);
    }
    uint16_t port = atoi(argv[1]);
    unique_ptr<TcpServer> svr(new TcpServer(port));

    svr->initServer();
    svr->Start();

    return 0;
}

cline.cc文件文章来源地址https://www.toymoban.com/news/detail-680293.html

#include <iostream>
#include <string>
#include <cstdio>
#include <unistd.h>
#include <strings.h>
#include <stdlib.h>

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
using namespace std;
static void usage(string proc)
{
    cout << "Usage: " << proc << "ServerIP ServerPort" << endl;
}
// ./tcp_clinet IP Prot
int main(int argc, char *argv[])
{
    if (argc != 3)
    {
        usage(argv[0]);
        exit(-1);
    }
    uint16_t serverPort = atoi(argv[2]);
    string serverIp = argv[1];

    int sock = socket(AF_INET, SOCK_STREAM, 0);

    if (sock < 0)
    {
        cerr << "sokcet error" << endl;
        exit(2);
    }
    // client 不需要显式的bind,OS会自动选择
    // 更不需要监听,但是需要连接的能力connect
    struct sockaddr_in server;
    bzero(&server, sizeof server);
    server.sin_family = AF_INET;
    server.sin_port = htons(serverPort);
    server.sin_addr.s_addr = inet_addr(serverIp.c_str());
    if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0)
    {
        cerr << "connect error" << endl;
        exit(3);
    }
    cout << "connect success!" << endl;

    while (true)
    {
        string line;
        cout << "Please Enter Message# ";
        getline(cin, line);
        send(sock, line.c_str(), line.size(), 0);
        char buffer[1024];
        ssize_t s = recv(sock, buffer, sizeof(buffer) - 1, 0);
        if (s > 0)
        {
            buffer[s] = 0;
            cout << "server echo# " << buffer << endl;
        }
        else if (s == 0)
        {
            break;
        }
        else
        {
            break;
        }
    }
    close(sock);
    return 0;
}

到了这里,关于【Linux】socket编程(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • linux并发服务器 —— linux网络编程(七)

    C/S结构 - 客户机/服务器;采用两层结构,服务器负责数据的管理,客户机负责完成与用户的交互;C/S结构中,服务器 - 后台服务,客户机 - 前台功能; 优点 1. 充分发挥客户端PC处理能力,先在客户端处理再提交服务器,响应速度快; 2. 操作界面好看,满足个性化需求; 3.

    2024年02月09日
    浏览(75)
  • 【Linux网络编程】网络编程套接字(TCP服务器)

    作者:爱写代码的刚子 时间:2024.4.4 前言:本篇博客主要介绍TCP及其服务器编码 只介绍基于IPv4的socket网络编程,sockaddr_in中的成员struct in_addr sin_addr表示32位 的IP地址 但是我们通常用点分十进制的字符串表示IP地址,以下函数可以在字符串表示和in_addr表示之间转换 字符串转in

    2024年04月14日
    浏览(79)
  • Linux高性能服务器编程 学习笔记 第五章 Linux网络编程基础API

    我们将从以下3方面讨论Linux网络API: 1.socket地址API。socket最开始的含义是一个IP地址和端口对(ip,port),它唯一表示了使用TCP通信的一端,本书称其为socket地址。 2.socket基础API。socket的主要API都定义在sys/socket.h头文件中,包括创建socket、命名socket、监听socket、接受连接、发

    2024年02月07日
    浏览(56)
  • Linux学习之网络编程3(高并发服务器)

    Linux网络编程我是看视频学的,Linux网络编程,看完这个视频大概网络编程的基础差不多就掌握了。这个系列是我看这个Linux网络编程视频写的笔记总结。 问题: 根据上一个笔记,我们可以写出一个简单的服务端和客户端通信,但是我们发现一个问题——服务器只能连接一个

    2024年02月01日
    浏览(50)
  • Linux网络编程:多进程 多线程_并发服务器

    文章目录: 一:wrap常用函数封装 wrap.h  wrap.c server.c封装实现 client.c封装实现 二:多进程process并发服务器 server.c服务器 实现思路 代码逻辑  client.c客户端 三:多线程thread并发服务器 server.c服务器 实现思路 代码逻辑  client.c客户端 ​​​​   read 函数的返回值 wrap.h  wrap

    2024年02月12日
    浏览(56)
  • Linux网络编程:线程池并发服务器 _UDP客户端和服务器_本地和网络套接字

    文章目录: 一:线程池模块分析 threadpool.c 二:UDP通信 1.TCP通信和UDP通信各自的优缺点 2.UDP实现的C/S模型 server.c client.c 三:套接字  1.本地套接字 2.本地套 和 网络套对比 server.c client.c threadpool.c   server.c client.c server.c client.c

    2024年02月11日
    浏览(66)
  • 【Linux网络编程】高并发服务器框架 线程池介绍+线程池封装

    前言 一、线程池介绍 💻线程池基本概念 💻线程池组成部分 💻线程池工作原理  二、线程池代码封装 🌈main.cpp 🌈ThreadPool.h 🌈ThreadPool.cpp 🌈ChildTask.h  🌈ChildTask.cpp 🌈BaseTask.h 🌈BaseTask.cpp 三、测试效果 四、总结 📌创建线程池的好处 本文主要学习 Linux内核编程 ,结合

    2024年01月16日
    浏览(95)
  • Socket网络编程(TCP/IP)实现服务器/客户端通信。

    一.前言 回顾之前进程间通信(无名管道,有名管道,消息队列,共享内存,信号,信号量),都是在同一主机由内核来完成的通信。 那不同主机间该怎么通信呢? 可以使用Socket编程来实现。 Socket编程可以通过网络来实现实现不同主机之间的通讯。 二.Socket编程的网络模型如

    2024年02月08日
    浏览(89)
  • 【Linux网络编程】TCP并发服务器的实现(IO多路复用select)

    服务器模型主要分为两种, 循环服务器 和 并发服务器 。 循环服务器 : 在同一时间只能处理一个客户端的请求。 并发服务器 : 在同一时间内能同时处理多个客户端的请求。 TCP的服务器默认的就是一个循环服务器,原因是有两个阻塞 accept函数 和recv函数 之间会相互影响。

    2024年02月03日
    浏览(82)
  • Linux网络编程:多路I/O转接服务器(select poll epoll)

    文章目录: 一:select 1.基础API  select函数 思路分析 select优缺点 2.server.c 3.client.c 二:poll 1.基础API  poll函数  poll优缺点 read函数返回值 突破1024 文件描述符限制 2.server.c 3.client.c 三:epoll 1.基础API epoll_create创建   epoll_ctl操作  epoll_wait阻塞 epoll实现多路IO转接思路 epoll优缺点

    2024年02月11日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包