数学建模:BP神经网络模型及其优化

这篇具有很好参考价值的文章主要介绍了数学建模:BP神经网络模型及其优化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

BP神经网络

数学建模:BP神经网络模型及其优化,数学建模,MATLAB,数学建模,神经网络,人工智能

算法流程

x 1 , x 2 , . . . , x i x_1,x_2,...,x_i x1,x2,...,xi 为输入变量, y y y 为输出变量, u j u_j uj 为隐藏层神经元的输出, f 为激活函数的映射关系。

v i j v_{ij} vij 为第 i i i 个输入变量与第 j j j 个隐藏层神经元的权重。

w j w_{j} wj 为第 j j j 个隐藏层神经元与 最终输出结果 y y y权重。

  1. 建立激活函数:常见的有 s i g m o d sigmod sigmod 激活函数,当然还有其他的激活函数,例如 t a n h tanh tanh 函数 与 R e L U ReLU ReLU 函数

s i g m o d 激活函数: f ( x ) = 1 1 + e − x sigmod激活函数:f(x)=\frac1{1+e^{-x}} sigmod激活函数:f(x)=1+ex1

R e L U 激活函数: f ( x ) = { x   i f   x > 0 0   i f   x < 0 ReLU 激活函数: \begin{aligned}f(x)=&\begin{cases}\mathrm{x}&\mathrm{~if~}x>0\\0&\mathrm{~if~}x<0&\end{cases}{}&\end{aligned} ReLU激活函数:f(x)={x0 if x>0 if x<0

  1. 进行正向传播,正向传播的公式如下

u j = f ( ∑ i = 1 n ν i j x i + θ j u ) j = 1 , 2 , … , m y = f ( ∑ j = 1 m w j u j + θ y ) \begin{aligned}u_j&=f\big(\sum_{i=1}^n\nu_{ij}x_i+\theta_j^u\big)j=1,2,\ldots,m\\y&=f(\sum_{j=1}^mw_ju_j+\theta^y)\end{aligned} ujy=f(i=1nνijxi+θju)j=1,2,,m=f(j=1mwjuj+θy)

  1. 我们最终想要得到的目标为真实值与通过网络预测值之间误差尽可能小,目标函数设定为:
    1. 其中真实输出值是 y ^ \hat y y^ ,预测输出值是: y y y,我们希望他们的差值平方求和尽可能小。

J = ∑ k ( y ( k ) − y ^ ( k ) ) 2 J=\sum_k{(y^{(k)}-\hat y^{(k)})^2} J=k(y(k)y^(k))2

b. 改变一下形式,拿出第 k k k 个对象做目标,再把所有对象总和作为最终目标, x i k x_i^{k} xik 代表第i个特征的输入:

J ( k ) = ( y ( k ) − y ^ ( k ) ) 2 J^{(k)}=(y^{(k)}-\hat y^{(k)})^2 J(k)=(y(k)y^(k))2

  1. 进行梯度下降法的反向传播,运用链式求导法则。
  2. 参数的优化:

v i j ′ = v i j − μ ∂ J ∂ v i j w j ′ = w j − μ ∂ J ∂ w j \begin{aligned}v_{ij}^{\prime}&=v_{ij}-\mu\frac{\partial J}{\partial v_{ij}}\\\\w_j^{\prime}&=w_j-\mu\frac{\partial J}{\partial w_j}\end{aligned} vijwj=vijμvijJ=wjμwjJ

  1. 得到最优参数 v v v w w w 以后,就可以获取模型,然后预测输出。

代码实现

function [ret_y_test_data,ret_BP_predict_data] = mfunc_BPnetwork(data,hiddenLayers,gradientDescentMethods)
    % BP神经网络算法
    % params:
    %       data:原始数据,Shape:(m,n) 需要从m行中抽取一部分作为test,剩下的作为train。第n列为预测结果
    %       hiddenLayers: newff函数所需要做的神经网络模型的隐藏层个数及每层数量,例如:[6,6,6] 三个隐藏层,每层6个数据
    %       gradientDescentMethods:每个隐藏层所需要的梯度下降算法,需要与hiddenLayers的数量一致,例如:{'logsig','tansig','logsig'};必须使用花括号
    % returns:
    %       ret_y_test_data:实际测试数据
    %       ret_BP_predict_data:预测数据
    [m,n]=size(data);
    % 划分训练集与测试集
    train_num=round(0.8*m); % 划分数量 
    x_train_data=data(1:train_num,1:n-1);
    y_train_data=data(1:train_num,n); % 第n列表表示预测结果
    x_test_data=data(train_num+1:end,1:n-1);
    y_test_data=data(train_num+1:end,n);
    
    % 标准化 mapminmax对行操作,需要转置
    x_train_data=x_train_data';
    y_train_data=y_train_data';
    x_test_data=x_test_data';
    % x_train_maxmin与y_train_maxmin用于以后复原
    [x_train_regular,x_train_maxmin] = mapminmax(x_train_data,0,1);
    [y_train_regular,y_train_maxmin] = mapminmax(y_train_data,0,1);

    % 创建网络
    t1=clock;
    net=newff(x_train_regular,y_train_regular,hiddenLayers,gradientDescentMethods);
    % net=newff(x_train_regular,y_train_regular,[6,3,3],{'logsig','tansig','logsig','purelin'});
    % net=newff(x_train_regular,y_train_regular,6,{'logsig','logsig'});
    % net=newff(x_train_regular,y_train_regular,6,{'logsig','purelin'});
    % net=newff(x_train_regular,y_train_regular,6,{'logsig','tansig'});
    % %设置训练次数
    % net.trainParam.epochs = 50000;
    % %设置收敛误差
    % net.trainParam.goal=0.000001;
    % newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) takes optional inputs,
    %      TF- Transfer function of ith layer. Default is 'tansig' for
    %              hidden layers, and 'purelin' for output layer.
    %%激活函数的设置
    %     compet - Competitive transfer function.
    %     elliotsig - Elliot sigmoid transfer function.
    %     hardlim - Positive hard limit transfer function.
    %     hardlims - Symmetric hard limit transfer function.
    %     logsig - Logarithmic sigmoid transfer function.
    %     netinv - Inverse transfer function.
    %     poslin - Positive linear transfer function.
    %     purelin - Linear transfer function.
    %     radbas - Radial basis transfer function.
    %     radbasn - Radial basis normalized transfer function.
    %     satlin - Positive saturating linear transfer function.
    %     satlins - Symmetric saturating linear transfer function.
    %     softmax - Soft max transfer function.
    %     tansig - Symmetric sigmoid transfer function.
    %     tribas - Triangular basis transfer function.
    %训练网络
    [net,~]=train(net,x_train_regular,y_train_regular);
    %%
    %将输入数据归一化
    % 利用x_train_maxmin来对x_test_data进行标准化
    x_test_regular = mapminmax('apply',x_test_data,x_train_maxmin);
    %放入到网络输出数据
    y_test_regular=sim(net,x_test_regular);
    %将得到的数据反归一化得到预测数据
    BP_predict=mapminmax('reverse',y_test_regular,y_train_maxmin);
    %%
    BP_predict=BP_predict';
    errors_nn=sum(abs(BP_predict-y_test_data)./(y_test_data))/length(y_test_data);
    t2=clock;
    Time_all=etime(t2,t1);
    disp(['运行时间:',num2str(Time_all)])
    figure;
    color=[111,168,86;128,199,252;112,138,248;184,84,246]/255;
    plot(y_test_data,'Color',color(2,:),'LineWidth',1)
    ret_y_test_data = y_test_data;
    hold on
    plot(BP_predict,'*','Color',color(1,:))
    ret_BP_predict_data = BP_predict;
    hold on
    titlestr=['MATLAB自带newff神经网络','   误差为:',num2str(errors_nn)];
    title(titlestr)
    disp(titlestr) 
end

神经网络的超参数优化

使用 fitrnet 可以进行神经网络的超参数优化。

具体步骤如下:使用贝叶斯方法进行超参数优化

  • OptimizeHyperparameters:auto
  • HyperparameterOptimizationOptions:struct(“AcquisitionFunctionName”,“expected-improvement-plus”,‘MaxObjectiveEvaluations’,optimize_num)
  • optimize_num:设置一个优化次数
Mdl = fitrnet(x_train_regular,y_train_regular,"OptimizeHyperparameters","auto", ...
        "HyperparameterOptimizationOptions",struct("AcquisitionFunctionName","expected-improvement-plus",'MaxObjectiveEvaluations',optimize_num))

其他与上面完全一样


代码实现

function mfunc_BP_OptimizedNetwork(data,optimize_num)
    % 神经网络的超参数优化
	  
    %
    [m,n]=size(data); 
    train_num=round(0.8*m); 
    % 获取训练集与测试集
    x_train_data=data(1:train_num,1:n-1);
    y_train_data=data(1:train_num,n);
    x_test_data=data(train_num+1:end,1:n-1);
    y_test_data=data(train_num+1:end,n);

    % 需要一次转置,mapminmax对行操作,并且返回的是转置后的
    [x_train_regular,x_train_maxmin] = mapminmax(x_train_data');
    [y_train_regular,y_train_maxmin] = mapminmax(y_train_data');
    % 将标准化后的训练集转置回来
    x_train_regular=x_train_regular';
    y_train_regular=y_train_regular';
    
    % 自定义优化次数
    % optimize_num = 5;
    % fitrnet 使用贝叶斯方法进行优化
    Mdl = fitrnet(x_train_regular,y_train_regular,"OptimizeHyperparameters","auto", ...
        "HyperparameterOptimizationOptions",struct("AcquisitionFunctionName","expected-improvement-plus",'MaxObjectiveEvaluations',optimize_num));

    % 导入测试集,进行测试集的标准化,同样x_test_data需要转置,并且我们指定它进行与训练集x执行相同的标准化
    x_test_regular = mapminmax('apply',x_test_data',x_train_maxmin);
    x_test_regular=x_test_regular';

    % 数据预测predict:放入到网络输出数据,得到 经过标准化后的预测结果
    y_test_regular=predict(Mdl,x_test_regular);

    % 将得到的数据反标准化得到真正的预测数据
    BP_predict=mapminmax('reverse',y_test_regular,y_train_maxmin);

    % 可视化与输出
    errors_nn=sum(abs(BP_predict-y_test_data)./(y_test_data))/length(y_test_data);
    figure;
    color=[111,168,86;128,199,252;112,138,248;184,84,246]/255;
    plot(y_test_data,'Color',color(2,:),'LineWidth',1)
    hold on
    plot(BP_predict,'*','Color',color(1,:))
    hold on
    titlestr=['MATLAB自带优化神经网络','   误差为:',num2str(errors_nn)];
    title(titlestr)
    disp(titlestr) 
end

数学建模:BP神经网络模型及其优化,数学建模,MATLAB,数学建模,神经网络,人工智能


神经网络的分类

分类问题:输出结果固定为 1,2,3等某一类。

最后可以得到准确率文章来源地址https://www.toymoban.com/news/detail-680377.html

clc;clear;close all;
load('iri_data.mat')
 data=(iri_data);
%% 看数据分布
train_num=round(0.8*size(data,1));%取整个数据0.8的比例训练,其余作为测试数据
choose=randperm(size(data,1));
train_data=data(choose(1:train_num),:);
test_data=data(choose(train_num+1:end),:);
n=size(data,2);
y=train_data(:,n);
x=train_data(:,1:n-1);

optimize_num=5;
% 使用贝叶斯网络进行优化
Mdl = fitcnet(x,y,"OptimizeHyperparameters","auto", ...
    "HyperparameterOptimizationOptions",struct("AcquisitionFunctionName","expected-improvement-plus",'MaxObjectiveEvaluations',optimize_num));
%% 测试一下效果
% x_test_regular = mapminmax('apply',x_test_data,x_train_maxmin);
% x_test_regular=x_test_regular';
%放入到网络输出数据
y_test_regular=predict(Mdl,test_data(:,1:end-1));
y_test_ture=test_data(:,end);
%%
accuracy=length(find(y_test_regular==y_test_ture))/length(y_test_ture);
disp('准确率为:')
disp(accuracy)
|============================================================================================================================================|
| Iter | Eval   | Objective   | Objective   | BestSoFar   | BestSoFar   |  Activations |  Standardize |       Lambda |            LayerSizes |
|      | result |             | runtime     | (observed)  | (estim.)    |              |              |              |                       |
|============================================================================================================================================|
|    1 | Best   |     0.17241 |      1.5495 |     0.17241 |     0.17241 |         relu |        false |   1.1049e-05 |  1                    |
|    2 | Best   |    0.068966 |      8.2032 |    0.068966 |    0.073079 |      sigmoid |         true |   1.7483e-06 | [236  45   2]         |
|    3 | Accept |     0.63793 |     0.18258 |    0.068966 |     0.08784 |         relu |         true |       82.744 | [295  41]             |
|    4 | Accept |     0.63793 |    0.097396 |    0.068966 |    0.092718 |         none |         true |       193.49 |  11                   |
|    5 | Best   |    0.060345 |       6.157 |    0.060345 |    0.062326 |      sigmoid |         true |   3.6739e-06 | [211  51   5]         |

__________________________________________________________
优化完成。
达到 MaxObjectiveEvaluations 5。
函数计算总次数: 5
总历时: 19.1325 秒
总目标函数计算时间: 16.1897

观测到的最佳可行点:
    Activations    Standardize      Lambda         LayerSizes    
    ___________    ___________    __________    _________________

      sigmoid         true        3.6739e-06    211     51      5

观测到的目标函数值 = 0.060345
估计的目标函数值 = 0.062326
函数计算时间 = 6.157

估计的最佳可行点(根据模型):
    Activations    Standardize      Lambda         LayerSizes    
    ___________    ___________    __________    _________________

      sigmoid         true        3.6739e-06    211     51      5

估计的目标函数值 = 0.062326
估计的函数计算时间 = 6.2702

准确率为:
    0.8966

到了这里,关于数学建模:BP神经网络模型及其优化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模-基于LightGBM和BP神经网络的互联网招聘需求分析与预测

    整体求解过程概述(摘要)    就业是民生之本,是发展之基,也是安国之策。2020 年新冠肺炎疫情的爆发,稳就业成为应对疫情、稳定社会的重要保障之一。随着数据新动能的发展,互联网招聘为招聘者和应聘者提供不限于时空的全局视角,因此本文从该角度出发对招聘者和

    2024年03月23日
    浏览(51)
  • 神经网络模型--数学建模

    目录 1.神经网络模型简介 2.神经网络在数学建模中用途 3.神经网络在数学建模中应用案例 3.1交通流量预测 3.2 股票价格预测 3.3图像识别 3.4自然语言处理 3.5智能控制   神经网络是一种人工智能算法,它受到了生物神经网络的启发。类似于生物神经网络,神经网络也由许多相互

    2024年02月01日
    浏览(49)
  • 数学建模——人工神经网络模型

       1943年心理学家McCulloch和数学家Pitts提出神经元生物数学模型(M-P模型),后来人工神经网络(Artifical Neural Network,ANN)是在生物神经网络(Biological Neural Network,BNN)基础上发展起来的,是对人脑的某种抽象、简化和模拟,是模拟人的智能的一种途径。     神经元是神经网络的基本

    2024年02月08日
    浏览(46)
  • 2023年神经网络与数学建模:原理、实现与案例

    在本博客中,我们将探讨神经网络这一模拟人脑神经元结构的计算模型,以及如何将其应用于数学建模。我们将详细解释神经网络的原理、使用 MATLAB 实现神经网络,并提供一个数学建模案例。博客内容如下: 目录 1. 神经网络简介 2. 神经网络的数学原理 2.1 前向

    2024年02月07日
    浏览(54)
  • Matlab数学建模算法之小波神经网络详解

    🔗 运行环境:Matlab 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥  推荐专栏:《算法研究》 🔐####  防伪水印——左手の明天 #### 🔐 💗 大家好🤗🤗🤗,我是 左手の明天 !好久不见💗 💗今天分享

    2024年02月20日
    浏览(57)
  • 数学建模-MATLAB神经网络工具箱实现数据拟合预测

    将数据集保存在矩阵data中 在APP页面找到Neural Net Fitting 3.输入与目标均为 data,Samples are 选择 Matrix rows 4.训练集和验证集的百分比可以自定义,一般默认 三种算法,各有优劣,一般默认第一个,点击Train进行训练 4.点击Performance 5.以此图为例,13.1572代表误差,误差越低越好,可

    2024年02月06日
    浏览(44)
  • 2023年9月数学建模博客:深度学习与多层神经网络

    目录 1. 深度学习简介 2. 多层神经网络基本原理 2.1 激活函数

    2024年02月07日
    浏览(51)
  • Matlab预测模型-BP神经网络模型

    训练集(Training set) —— 用于模型拟合的数据样本。 验证集(Validation set) —— 是模型训练过程中单独留出的样本集,它可以用于调整模型的超参数和用于对模型的能力进行初步评估。在神经网络中,我们用验证数据集去寻找最优的网络深度,或者决定反向传播算法的停止

    2024年02月11日
    浏览(44)
  • Python实现GA遗传算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

    说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生

    2024年02月14日
    浏览(226)
  • BP神经网络优化 | MATLAB基于遗传算法优化BP神经网络(GA-BP)的预测模型(含完整代码)

    文章目录 前言 一、遗传算法描述 二、优化思路 三、完整代码 预测结果  首先需要安装一下遗传算法工具箱,可参考这篇博客 MATLAB遗传算法工具箱安装包及安装方法(图解)_周杰伦今天喝奶茶了吗的博客-CSDN博客_matlab遗传算法工具箱安装 本模型可以结合自己的数据集进行

    2024年02月02日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包