4.17 如何基于 UDP 协议实现可靠传输?

这篇具有很好参考价值的文章主要介绍了4.17 如何基于 UDP 协议实现可靠传输?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

QUIC 是如何实现可靠传输的?

Packet Header

QUIC Frame Header

QUIC 是如何解决 TCP 队头阻塞问题的?

什么是TCP对头阻塞问题:

HTTP/2 的队头阻塞:

没有队头阻塞的 QUIC

QUIC 是如何做流量控制的?

QUIC 实现流量控制的方式:

QUIC 对拥塞控制改进

QUIC 更快的连接建立

QUIC 是如何迁移连接的?


已经有基于 UDP 协议实现的可靠传输协议的成熟方案了,那就是 QUIC 协议,已经应用在了 HTTP/3。 

4.17 如何基于 UDP 协议实现可靠传输?,小林coding 计算机网络,udp,网络,网络协议

QUIC 是如何实现可靠传输的?

要基于 UDP 实现的可靠传输协议,那么就要在应用层下功夫,也就是要设计好协议的头部字段

4.17 如何基于 UDP 协议实现可靠传输?,小林coding 计算机网络,udp,网络,网络协议

Packet Header

首次建立连接时和日常传输数据时使用的 Header 是不同的.

QUIC 也是需要三次握手来建立连接的,主要目的是为了协商连接 ID。QUIC 报文中的 Pakcet Number 是严格递增的, 即使是重传报文,它的 Pakcet Number 也是递增的,这样就能更加精确计算出报文的 RTT。

QUIC 使用的 Packet Number 单调递增的设计,可以让数据包不再像 TCP 那样必须有序确认,QUIC 支持乱序确认,当数据包Packet N 丢失后,只要有新的已接收数据包确认,当前窗口就会继续向右滑动。

4.17 如何基于 UDP 协议实现可靠传输?,小林coding 计算机网络,udp,网络,网络协议

QUIC Frame Header

QUIC 通过单向递增的 Packet Number,配合 Stream ID 与 Offset 字段信息,可以支持乱序确认而不影响数据包的正确组装,摆脱了TCP 必须按顺序确认应答 ACK 的限制,解决了 TCP 因某个数据包重传而阻塞后续所有待发送数据包的问题。

QUIC 是如何解决 TCP 队头阻塞问题的?

什么是TCP对头阻塞问题:

其实就是接收窗口的对头阻塞问题,接收方收到的数据必须是在接收窗口范围内,如果收到超过窗口范围的数据就丢弃数据,

        当接收窗口收到有序数据时,接收窗口才能往前滑动,然后那些已经接收并且被确认的「有序」数据就可以被应用层读取。

        当接收窗口收到的数据不是有序的,比如收到第 33~40 字节的数据,由于第 32 字节数据没有收到, 接收窗口无法向前滑动,那么即使先收到第 33~40 字节的数据,这些数据也无法被应用层读取的。只有当发送方重传了第 32 字节数据并且被接收方收到后,接收窗口才会往前滑动,然后应用层才能从内核读取第 32~40 字节的数据。

         TCP 必须按序处理数据,也就是 TCP 层为了保证数据的有序性,只有在处理完有序的数据后,滑动窗口才能往前滑动,否则就停留,停留「接收窗口」会使得应用层无法读取新的数据。

HTTP/2 的队头阻塞:

HTTP/2 通过抽象出 Stream 的概念,实现了 HTTP 并发传输,一个 Stream 就代表 HTTP/1.1 里的请求和响应。不同 Stream 的帧是可以乱序发送的(因此可以并发不同的 Stream ),因为每个帧的头部会携带 Stream ID 信息,所以接收端可以通过 Stream ID 有序组装成 HTTP 消息,而同一 Stream 内部的帧必须是严格有序的。

是 HTTP/2 多个 Stream 请求都是在一条 TCP 连接上传输,这意味着多个 Stream 共用同一个 TCP 滑动窗口,那么当发生数据丢失,滑动窗口是无法往前移动的,此时就会阻塞住所有的 HTTP 请求,这属于 TCP 层队头阻塞4.17 如何基于 UDP 协议实现可靠传输?,小林coding 计算机网络,udp,网络,网络协议

没有队头阻塞的 QUIC

QUIC 也借鉴 HTTP/2 里的 Stream 的概念,在一条 QUIC 连接上可以并发发送多个 HTTP 请求 (Stream)。

 QUIC 给每一个 Stream 都分配了一个独立的滑动窗口,各自控制的滑动窗口4.17 如何基于 UDP 协议实现可靠传输?,小林coding 计算机网络,udp,网络,网络协议

QUIC 是如何做流量控制的?

TCP 流量控制是通过让「接收方」告诉「发送方」,它(接收方)的接收窗口有多大,从而让「发送方」根据「接收方」的实际接收能力控制发送的数据量。

QUIC 实现流量控制的方式:

  • 通过 window_update 帧告诉对端自己可以接收的字节数,这样发送方就不会发送超过这个数量的数据。
  • 通过 BlockFrame 告诉对端由于流量控制被阻塞了,无法发送数据。

TCP 的接收窗口在收到有序的数据后,接收窗口才能往前滑动;

QUIC 是基于 UDP 传输的,而 UDP 没有流量控制,因此 QUIC 实现了自己的流量控制机制。

QUIC 的 每个 Stream 都有各自的滑动窗口,不同 Stream 互相独立,队头的 Stream A 被阻塞后,不妨碍 StreamB、C的读取4.17 如何基于 UDP 协议实现可靠传输?,小林coding 计算机网络,udp,网络,网络协议

QUIC 对拥塞控制改进

QUIC 协议当前默认使用了 TCP 的 Cubic 拥塞控制算法。QUIC 是处于应用层的,应用程序层面就能实现不同的拥塞控制算法,不需要操作系统,不需要内核支持,可以针对不同的应用设置不同的拥塞控制算法。

QUIC 更快的连接建立

QUIC 内部包含了 TLS,它在自己的帧会携带 TLS 里的“记录”,再加上 QUIC 使用的是 TLS1.3,因此仅需 1 个 RTT 就可以「同时」完成建立连接与密钥协商,甚至在第二次连接的时候,应用数据包可以和 QUIC 握手信息(连接信息 + TLS 信息)一起发送,达到 0-RTT 的效果

QUIC 是如何迁移连接的?

TCP传输协议使用HTTP协议,通过四元组确定一条TCP连接。

QUIC 协议没有用四元组的方式来“绑定”连接,而是通过连接 ID来标记通信的两个端点,客户端和服务器可以各自选择一组 ID 来标记自己,因此即使移动设备的网络变化后,导致 IP 地址变化了,只要仍保有上下文信息(比如连接 ID、TLS 密钥等),就可以“无缝”地复用原连接,消除重连的成本,没有丝毫卡顿感,达到了连接迁移的功能。文章来源地址https://www.toymoban.com/news/detail-680541.html

到了这里,关于4.17 如何基于 UDP 协议实现可靠传输?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • l8-d10 TCP协议是如何实现可靠传输的

    TCP 是面向连接的运输层协议,在无连接的、不可靠的 IP 网络服务基础之上提供可靠交付的服务。为此,在 IP 的数据报服务基础之上,增加了保证可靠性的一系列措施。 TCP主要特点 1.TCP 是面向连接的运输层协议。         每一条 TCP 连接只能有两个端点 (endpoint),每一条

    2024年02月09日
    浏览(38)
  • 基于UDP传输协议的实现分析之流量和拥塞控制

    UDP的概念 UDP 是User Datagram Protocol的简称, 中文名是用户数据报协议,是OSI(Open System Interconnection,开放式系统互联) 参考模型中一种无连接的传输层协议,提供面向事务的简单不可靠信息传送服务,IETF RFC 768是UDP的正式规范。UDP在IP报文的协议号是17。 流量控制 对于一个带

    2024年02月07日
    浏览(38)
  • TCP 和 UDP 的区别、TCP 是如何保证可靠传输的?

    先来介绍一些osi七层模型 分为应用层、表示层、会话层、运输层、网络层、链路层、物理层。 应用层(数据):确定进程之间 通信的性质 以及满足用户需要以及提供网络和用户应用,为应用程序提供服务,DNS,HTTP,HTTPS,DHCP,FTP,POP3(Post Office Protocol)、SMTP(Simple Mail Transfer P

    2024年02月11日
    浏览(39)
  • 【网络协议】聊聊TCP如何做到可靠传输的

    网络是不可靠的,所以在TCP协议中通过各种算法等机制保证数据传输的可靠性。生活中如何保证消息可靠传输的,那么就是采用一发一收的方式,但是这样其实效率并不高,所以通常采用的是累计确认或者累计应答。 TCP为了保证顺序性,每个包都有一个ID,这个是建立连接之

    2024年02月08日
    浏览(40)
  • 【lwip】14-TCP协议之可靠传输的实现(TCP干货)

    ‍ 前面章节太长了,不得不分开。 这里已源码为主,默认读者已知晓概念或原理,概念或原理可以参考前面章节,有分析。 参考:李柱明博客:https://www.cnblogs.com/lizhuming/p/17438743.html ‍ lwip的时钟机制可以翻看前面章节。 lwip的TCP可靠传传输的实现离不开两个时钟处理函数:

    2024年02月06日
    浏览(45)
  • 基于UDP协议的千兆以太网传输(FPGA)

    @[TOC]基于UDP协议的千兆以太网传输(FPGA) UDP协议是一种基于无连接协议,即发送端发送数据无需确认接收端是否存在;接收端收到数据后也无需给发送端反馈是否收到,所以UDP在数据发送过程中允许丢失一两包数据。用于对丢包不严格的场合,比如视频流,偶有一两帧的丢

    2024年02月12日
    浏览(70)
  • 【lwip】14-TCP协议分析之TCP协议之可靠传输的实现(TCP干货)

    ‍ 前面章节太长了,不得不分开。 这里已源码为主,默认读者已知晓概念或原理,概念或原理可以参考前面章节,有分析。 参考:李柱明博客:https://www.cnblogs.com/lizhuming/p/17438743.html ‍ lwip的时钟机制可以翻看前面章节。 lwip的TCP可靠传传输的实现离不开两个时钟处理函数:

    2024年02月06日
    浏览(53)
  • UDP的可靠性传输2

    第一章 UDP的可靠性传输-理论篇(一) 第二章 UDP的可靠性传输-理论篇(二) RTO (Retransmission TimeOut) 即重传超时时间 RTT(Round Trip Time) 往返时延 。 表示从发送端发送数据开始 到发送端收到来自接收端的确认 接收端收到数据后便立即发送确认 总共经历的时延; 由三部分组成

    2024年02月09日
    浏览(27)
  • 千兆以太网传输层 UDP 协议原理与 FPGA 实现(UDP接收)

    相关文章: (1)千兆以太网网络层 ARP 协议的原理与 FPGA 实现 (2)千兆以太网硬件设计及链路层 MAC 协议格式 (3)CRC校验原理及实现 (4)RGMII 与 GMII 转换电路设计 (5)千兆以太网网络层 IP 协议介绍与 IP 校 验和算法实现 (6)千兆以太网传输层 UDP 协议原理与 FPGA 实现(

    2024年02月04日
    浏览(123)
  • TCP如何保证可靠性,TCP如何实现可靠性传输的

    tcp 如何保证可靠性 大家都知道TCP是可靠性传输协议,既然是可靠的,就需要解决比如包丢失了、数据被破坏了、包重复了、乱序了等等这样的问题。下面将从几个方面介绍TCP的可靠性。 1. 校验和 TCP每一段报文都有校验和,这保证了报文不被破坏或篡改,如果收到的报文在校

    2024年02月10日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包