hadoop 学习:mapreduce 入门案例一:WordCount 统计一个文本中单词的个数

这篇具有很好参考价值的文章主要介绍了hadoop 学习:mapreduce 入门案例一:WordCount 统计一个文本中单词的个数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一 需求

这个案例的需求很简单

现在这里有一个文本wordcount.txt,内容如下

hadoop 学习:mapreduce 入门案例一:WordCount 统计一个文本中单词的个数,hadoop,学习,mapreduce

现要求你使用 mapreduce 框架统计每个单词的出现个数 

这样一个案例虽然简单但可以让新学习大数据的同学熟悉 mapreduce 框架

二 准备工作

(1)创建一个 maven 工程,maven 工程框架可以选择quickstart

(2)在properties中添加 hadoop.version,导入依赖,pom.xml内容如下

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>maven_hadoop</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.11</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-common</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
    </dependencies>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <hadoop.version>3.1.3</hadoop.version>
    </properties>

</project>

(3)准备数据,创建两个文件夹 in,out(一个是输入文件,一个是输出文件),输入文件放在 in 文件夹中文章来源地址https://www.toymoban.com/news/detail-680829.html

三 编写 WordCountMapper 类

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

//                                              <0,       hello java, hello, 1       >
//                                              <0,       hello java, java, 1       >
//  alt + ins
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {

    Text text = new Text();
    IntWritable intWritable =  new IntWritable();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        System.out.println("WordCountMap stage Key:"+key+"  Value:"+value);
        String[] words = value.toString().split(" ");  // "hello java"--->[hello,java]
        for (String word :
                words) {
            text.set(word);
            intWritable.set(1);
            context.write(text,intWritable);   //<hello,1>,<java,1>
        }
    }
}

四 编写 WordCountReducer 类

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class WordCountReduce extends Reducer<Text, IntWritable, Text, LongWritable> {
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        System.out.println("Reduce stage Key:" + key + "  Values:" + values.toString());
        int count = 0;
        for (IntWritable intWritable :
                values) {
            count+=intWritable.get();
        }

        LongWritable longWritable = new LongWritable(count);
        System.out.println("ReduceResult key:"+key+" resultValue:"+longWritable.get());
        context.write(key,longWritable);
    }
}

五 编写WordCountDriver 类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCountDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        job.setJarByClass(WordCountDriver.class);

        // 设置job的map阶段 工作任务
        job.setMapperClass(WordCountMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        // 设置job的reduce阶段 工作任务
        job.setReducerClass(WordCountReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);

        // 指定job map阶段的输入文件的路径
        FileInputFormat.setInputPaths(job, new Path("D:\\bigdataworkspace\\kb23\\hadoopstu\\in\\wordcount.txt"));

        // 指定job reduce阶段的输出文件路径
        Path path = new Path("D:\\bigdataworkspace\\kb23\\hadoopstu\\out1");
        FileSystem fileSystem = FileSystem.get(path.toUri(), conf);
        if (fileSystem.exists(path))
            fileSystem.delete(path,true);
        FileOutputFormat.setOutputPath(job, path);

        // 启动job
        job.waitForCompletion(true);


    }
}

到了这里,关于hadoop 学习:mapreduce 入门案例一:WordCount 统计一个文本中单词的个数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • hadoop学习:mapreduce入门案例四:partitioner 和 combiner

    hadoop学习:mapreduce入门案例四:partitioner 和 combiner

    先简单介绍一下partitioner 和 combiner  Partitioner类 用于在Map端对key进行分区 默认使用的是HashPartitioner 获取key的哈希值 使用key的哈希值对Reduce任务数求模 决定每条记录应该送到哪个Reducer处理 自定义Partitioner 继承抽象类Partitioner,重写getPartition方法 job.setPartitionerClass(MyPartitione

    2024年02月10日
    浏览(12)
  • YARN On Mapreduce搭建与wordCount案例实现

    YARN On Mapreduce搭建与wordCount案例实现

    YARN的基本思想是将资源管理RM,和作业调度、监控功能拆分成单独的守护进程。这个思想中拥有一个全局的资源管理器以及每个应用的MASTER,AM。每一个应用 都是单个作业或者一个DAG作业。 架构图: mapred-site.xml yarn-site.xml 配置节点分发到其他节点。 启动yarn 启动rm资源管理 访

    2023年04月24日
    浏览(8)
  • Hadoop 实战 | 词频统计WordCount

    通过分析大量文本数据中的词频,可以识别常见词汇和短语,从而抽取文本的关键信息和概要,有助于识别文本中频繁出现的,这对于理解文本内容和主题非常关键。同时,通过分析词在文本中的相对频率,可以帮助理解词在不同上下文中的含义和语境。 \\\"纽约时报\\\"评

    2024年02月02日
    浏览(12)
  • 第三节 Hadoop学习案例——MapReduce课程设计 好友推荐功能

    第三节 Hadoop学习案例——MapReduce课程设计 好友推荐功能

    提示:文章内容主要以案例为主 目录 前言 项目说明 一,程序需求 1.需求 2.数据 二,编码操作 1.项目建包目录 2.FriendsRecommend.java  3.FriendsRecommendMapper.java 4.FriendsRecommendReduce.java 三,Xshell运行的步骤 1.创建目录 2.上传程序  3.分布式文件系统上传测试数据  4.执行程序 5. 查看结

    2024年02月07日
    浏览(14)
  • Hadoop快速入门+MapReduce案例(赠送17到23年往年真题答案+MapReduce代码文件)-----大数据与人工智能比赛

    Hadoop快速入门+MapReduce案例(赠送17到23年往年真题答案+MapReduce代码文件)-----大数据与人工智能比赛

    Hadoop的核心就是HDFS和MapReduce HDFS为海量数据提供了 存储 而MapReduce为海量数据提供了 计算框架 一.HDFS 整个HDFS有三个重要角色: NameNode (名称节点)、 DataNode (数据节点)和 Client (客户机) NameNode :是Master节点(主节点) DataNode : 是Slave节点(从节点),是文件存储的基本

    2024年02月20日
    浏览(5)
  • Hadoop之——WordCount案例与执行本地jar包

    Hadoop之——WordCount案例与执行本地jar包

    目录 一、WordCount代码 (一)WordCount简介 1.wordcount.txt (二)WordCount的java代码 1.WordCountMapper 2.WordCountReduce 3.WordCountDriver (三)IDEA运行结果 (四)Hadoop运行wordcount 1.在HDFS上新建一个文件目录 2.新建一个文件,并上传至该目录下 3.执行wordcount命令 4.查看运行结果 5.第二次提交报错原因 6.进

    2024年02月08日
    浏览(16)
  • Hadoop入门学习笔记——四、MapReduce的框架配置和YARN的部署

    Hadoop入门学习笔记——四、MapReduce的框架配置和YARN的部署

    视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd=5ay8 Hadoop入门学习笔记(汇总) 本次YARN的部署结构如下图所示: 当前,共有三台服务器(虚拟机)构成集群,集群规划如下所示: 主机 部署的服务 node1 ResourceManager、N

    2024年02月04日
    浏览(6)
  • Hadoop MapReduce 统计汽车销售信息

    Hadoop MapReduce 统计汽车销售信息

    本文将讨论如何使用Hadoop MapReduce来统计汽车销售信息。 汽车销售的记录文件名叫Cars.csv,里面记录了汽车的销售信息,数据内容如下: 格式为: 第1列:销售的省份 第3列:销售的城市 第7列:汽车生产商 第8列:汽车品牌名 第12列:汽车销售数量 已经将Cars.csv上传到HDFS文件

    2024年02月03日
    浏览(39)
  • 【入门Flink】- 02Flink经典案例-WordCount

    【入门Flink】- 02Flink经典案例-WordCount

    需求:统计一段文字中,每个单词出现的频次 基本思路:先逐行读入文件数据,然后将每一行文字拆分成单词;接着按照单词分组,统计每组数据的个数。 1.1.数据准备 resources目录下新建一个 input 文件夹,并在下面创建文本文件words.txt words.txt 1.2.代码编写 打印结果如下:(

    2024年02月06日
    浏览(13)
  • Hadoop3 - MapReduce COVID-19 案例实践

    Hadoop3 - MapReduce COVID-19 案例实践

    上篇文章对 MapReduce 进行了介绍,并编写了 WordCount 经典案例的实现,本篇为继续加深 MapReduce 的用法,实践 COVID-19 新冠肺炎案例,下面是上篇文章的地址: https://blog.csdn.net/qq_43692950/article/details/127195121 COVID-19,简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病” [1-

    2024年02月08日
    浏览(8)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包