R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...

这篇具有很好参考价值的文章主要介绍了R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原文链接:http://tecdat.cn/?p=23800

由于空气污染对公众健康的不利影响,人们一直非常关注。世界各国的环境部门都通过各种方法(例如地面观测网络)来监测和评估空气污染问题点击文末“阅读原文”获取完整代码数据)。

介绍

全球的地面站及时测量了许多空气污染物,例如臭氧、一氧化碳、颗粒物。EPA(环境保护署)提供了空气污染数据,本文选择了颗粒物2.5(PM2.5)和空气质量指数(AQI)这两个关键变量,以可视化和分析空气污染的趋势和模式。PM2.5代表直径小于2.5微米的颗粒物浓度,AQI是综合考虑所有主要污染物的空气污染状况的整体指标。具体来说,此工作的数据源列出如下:

  • 监测人员每天的PM 2.5浓度水平和AQI指数数据;

  • 县一级的AQI年度摘要。

数据预处理

每日站点数据包含每个地面站与PM2.5相关的各种属性。有关站信息,污染物的关键变量通过以下代码从原始数据中过滤掉。重命名过滤后的数据框的列名,以方便以下分析。

#导入数据
aqi <- read_csv("aqi.csv")

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

daily<- read_csv("daily.csv")

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

names(data) <- c( "date", 
                     "pm25", "aqi",  "long", "lat")

统计摘要

对点级PM2.5浓度和县级AQI指数的基本统计描述可以帮助更好地理解这两个变量。在这里,直方图和箱形图用于可视化PM2.5浓度和AQI的分布特征。每日AQI指数可衡量空气污染的严重程度,可用于根据AQI的值将天数分为不同的类别。就空气污染水平而言,通常可以将天气分为四类,包括良好,中度,不健康和危险。

本报告中使用的县级AQI数据包括四个类别变量,代表每个类别的天数。下面的代码直观地显示了四个类别变量的分布。根据直方图,大多数县在整年总体空气质量良好,这可以通过良好''分布的偏斜来表示,不健康''和危险''的0天左右的分布间隔非常窄。此外,良好''和中等''的分布显示出相反的偏斜,这表明空气质量中等的日子在全年并不典型,因为中等''的分布集中在50天以下,而``良好''的分布在250天以上。

## 县域内aqi的直方图
vi <-
  aqi %>% 
  select(`好', `中等', `不健康', `危险') %>%

ggplot(data = vi )

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

县级数据代表空气污染的平均水平。来自地面站的PM2.5和AQI的点级测量描述了空气污染的详细情况和当地情况。


点击标题查阅往期内容

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

R语言空间可视化:绘制英国脱欧投票地图

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

左右滑动查看更多

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

01

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

02

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

03

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

04

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

站级的PM2.5和AQI的分布如下所示。两种分布都显示出正偏度,AQI聚集在50附近,而PM2.5低于25。在这一年中,很少出现两个变量都具有高值的站点。

## ##AQI和PM2.5的直方图
  pmaqi  %>%
ggplot(data) +
  geom_histogram(aes(x = value), bins = 35) +

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

ggplot(data) +
  geom_boxplot(aes(x =class,  y = value))

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

时间变化

每日数据记录了2018年监测站点每天的观测时间序列,可用于探索PM2.5和AQI的趋势。首先,针对每种数据对每种状态下站点的测量值求平均。选择了七个州的时间序列以显示其一年中的变化,如下所示。从该图可以看出,南部和西部各州在年初就经历了严重的空气污染问题。趋势曲线的高峰表明,下半年的空气质量均较差。

##按州和日排列
vis <- 
  select(state, date, pm25, aqi) %>%
  group_by(state, date) %>%
  summarise(pm25 = mean(pm25), aqi = mean(aqi)) %>%

ggplot(data = vis)

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

为了显示总体变化,每天汇总来自所有监视的测量值。一年中的总体变化绘制如下。我们可以看到,AQI和PM2.5的变化趋势显示出相似的模式,而夏季和冬季的空气污染更为严重。

##按天数计算
  select(date, pm25, aqi) %>%
  group_by(date) %>%
  summarise( mean(pm25), mean(aqi)) %>%
ggplot(data = vis) +

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

空间分布

汇总了针对不同州的县级AQI指数,以探索每个州的空气质量的空间变化。下图通过渐变颜色绘制了变量良好天气的不同平均值。该地图显示了各州空气质量良好的日子。从地图上可以看出,北部和东部地区的空气条件比其他州更好。

##按州汇总aqi(区域水平)。

vis <- 
  aqi %>%
  group_by(State) %>%


ggplot() +
  geom_polygon(aes(x = long, y = lat, group = group, fill = good)

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

下面还绘制了不健康天数变量的平均值,这证实了以前的观察结果,即东部各州的空气条件较好。

ggplot() +
  geom_polygon(aes(x = long, y = lat, group ,  fill ),          
  scale\_fill\_distiller

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

每个站点的站点级别测量值汇总为年平均值。下图显示了美国年平均PM2.5浓度的空间分布。绿色点表示较低的PM2.5浓度。西部的测站测得的PM2.5浓度较高。

## 数据的汇总
###用于pm2.5
  pmaqi %>%
  summarise(pm25 = mean(pm25), aqi = mean(aqi), long = mean(long), lat = mean(lat)) %>%
ggplot() +
  geom_polygon(aes(x = long, y = lat, group = group)

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

AQI可以提供更全面的空气状况度量。站点上的点级AQI映射如下。由于AQI考虑了许多典型污染物,因此与PM2.5的模式相比,AQI的分布显示出不同的模式。

###aqi指数
vi<- vi\[class == "aqi", \]
ggplot(vi) +
  geom_polygon(aes(x = long, y = lat, group = group)

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

结论

本报告利用了空气污染数据和R的可视化,从时空维度探讨了空气污染的分布和格局。从数据中可以识别出PM2.5和AQI的时空变化。夏季和冬季均遇到空气污染问题。西部和南部的州比北部和东部的州更容易遭受空气污染问题。

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

本文中分析的数据分享到会员群,扫描下面二维码即可加群!

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

点击文末“阅读原文”

获取全文完整资料。

本文选自《R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)》。

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

点击标题查阅往期内容

上海无印良品地理空间分布特征与选址策略可视化研究

R语言空间可视化:绘制英国脱欧投票地图

R语言在地图上绘制散点饼图可视化 

r语言空间可视化绘制道路交通安全事故地图

在GIS中用ggmap地理空间数据分析

tableau的骑行路线地理数据可视化

R语言推特twitter转发可视化分析

618电商大数据分析可视化报告

用RSHINY DASHBOARD可视化美国投票记录

python主题LDA建模和t-SNE可视化

R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告

R语言动态图可视化:如何、创建具有精美动画的图

Tableau 数据可视化:探索性图形分析新生儿死亡率数据

R语言动态可视化:制作历史全球平均温度的累积动态折线图动画gif视频图

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言

R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...,r语言,开发语言文章来源地址https://www.toymoban.com/news/detail-681046.html

到了这里,关于R语言空气污染数据的地理空间可视化和分析:颗粒物2.5(PM2.5)和空气质量指数(AQI)...的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析

    在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回

    2024年02月14日
    浏览(46)
  • 空气质量查询API促使空气数据可视化

    引言 在当今的现代化社会中,关注和改善空气质量已成为人们共同的关切。随着科技的不断发展,空气质量查询API为我们提供了一种前所未有的方式来实时监测、分析和改善我们所处的环境。这一工具不仅让我们更深入地了解空气质量,还鼓励了空气数据的可视化,使其更易

    2024年02月08日
    浏览(46)
  • 基于大数据的空气质量预测与可视化分析

    1.内容及要求: 随着工业化和城市化进程的加快,空气污染已成为全球面临的主要环境问题之一。二零二零年我国提出“碳达峰碳中和”的目标,更加深刻我国走可持续发展道路的脚步。在我国,特别是某些大城市,由于车辆排放、工业排放和其他人为活动,空气质量问题

    2024年03月20日
    浏览(55)
  • 基于大数据的空气质量预测和可视化分析

    城市化与环境挑战 :随着城市化进程的加快,环境污染问题,尤其是空气质量问题,已成为公众关注的焦点。 数据监测的重要性 :城市空气质量数据的准确获取对于环境管理和政策制定至关重要,但目前存在数据来源不稳定和质量参差不齐的问题。 发达国家的监测体系 :

    2024年04月17日
    浏览(39)
  • 地理空间分析12——地理位置数据隐私与安全

    在数字化时代,地理位置数据成为了众多应用程序和服务不可或缺的一部分。从导航应用到社交媒体,从广告定位到城市规划,地理位置数据的应用范围广泛。然而,这些数据的收集和使用也引发了广泛的隐私和安全担忧。本文将探讨地理位置数据隐私的挑战和重要性,并介

    2024年03月19日
    浏览(58)
  • 生态经济学领域里的R语言机器学(数据的收集与清洗、综合建模评价、数据的分析与可视化、数据的空间效应、因果推断等)

    近年来,人工智能领域已经取得突破性进展,对经济社会各个领域都产生了重大影响,结合了统计学、数据科学和计算机科学的机器学习是人工智能的主流方向之一,目前也在飞快的融入计量经济学研究。表面上机器学习通常使用大数据,而计量经济学则通常使用较小样本,

    2024年02月11日
    浏览(57)
  • 大数据毕业设计python+spark天气预测 天气可视化 天气大数据 空气质量检测 空气质量分析 气象大数据 气象分析 大数据毕设 计算机毕业设计 机器学习 深度学习 人工智能 知识图谱

    论文题目 选题依据 天气预测是指综合使用现代科学技术对某一地区未来一段时间的温度、湿度、风力、风向、天气状况等进行预测。在当今社会,天气预测对人们的生产生活有着举足轻重的影响,与日常出行、农业生产、自然灾害预防等多个领域息息相关,是现代社会正常运转

    2024年04月26日
    浏览(64)
  • python上海空气质量数据可视化大屏全屏系统设计与实现(django框架)

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、

    2024年02月03日
    浏览(47)
  • python天津空气质量数据可视化大屏全屏系统设计与实现(django框架)

     博主介绍 :黄菊华老师《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、

    2024年02月03日
    浏览(53)
  • Redis Geo:掌握地理空间数据的艺术

    欢迎来到我的博客,代码的世界里,每一行都是一个故事 在移动互联网和物联网的时代,地理位置数据无处不在。从导航和配送到社交网络和广告,地理位置信息正在重新定义我们与世界的互动方式。但是,处理和分析这些大量的地理空间数据绝非易事。这时,Redis Geo应运而

    2024年02月02日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包