基于WIN10的64位系统演示
一、写在前面
上期我们基于TensorFlow环境做了图像识别的多分类任务建模。
本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于Pytorch环境,构建SqueezeNet多分类模型,因为它建模速度快。
同样,基于GPT-4辅助编程,这次改写过程就不展示了。
二、多分类建模实战
使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,健康人900张,肺结核病人700张,COVID-19病人549张、细菌性(病毒性)肺炎组900张,分别存入单独的文件夹中。
(a)直接分享代码
######################################导入包###################################
# 导入必要的包
import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as np
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
################################导入数据集#####################################
import torch
from torchvision import datasets, transforms
import os
# 数据集路径
data_dir = "./MTB-1"
# 图像的大小
img_height = 100
img_width = 100
# 数据预处理
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(img_height),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(0.2),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize((img_height, img_width)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
# 加载数据集
full_dataset = datasets.ImageFolder(data_dir)
# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.7 * full_size) # 假设训练集占70%
val_size = full_size - train_size # 验证集的大小
# 随机分割数据集
torch.manual_seed(0) # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])
# 将数据增强应用到训练集
train_dataset.dataset.transform = data_transforms['train']
# 创建数据加载器
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes
###############################定义SqueezeNet模型################################
# 定义SqueezeNet模型
model = models.squeezenet1_1(pretrained=True) # 这里以SqueezeNet 1.1版本为例
num_ftrs = model.classifier[1].in_channels
# 根据分类任务修改最后一层
model.classifier[1] = nn.Conv2d(num_ftrs, len(class_names), kernel_size=(1,1))
# 修改模型最后的输出层为我们需要的类别数
model.num_classes = len(class_names)
model = model.to(device)
# 打印模型摘要
print(model)
#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.Adam(model.parameters())
# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
# 开始训练模型
num_epochs = 50
# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# 每个epoch都有一个训练和验证阶段
for phase in ['train', 'val']:
if phase == 'train':
model.train() # 设置模型为训练模式
else:
model.eval() # 设置模型为评估模式
running_loss = 0.0
running_corrects = 0
# 遍历数据
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# 零参数梯度
optimizer.zero_grad()
# 前向
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# 只在训练模式下进行反向和优化
if phase == 'train':
loss.backward()
optimizer.step()
# 统计
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()
# 记录每个epoch的loss和accuracy
if phase == 'train':
train_loss_history.append(epoch_loss)
train_acc_history.append(epoch_acc)
else:
val_loss_history.append(epoch_loss)
val_acc_history.append(epoch_acc)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
print()
# 保存模型
torch.save(model.state_dict(), 'model.pth')
# 加载最佳模型权重
#model.load_state_dict(best_model_wts)
#torch.save(model, 'shufflenet_best_model.pth')
#print("The trained model has been saved.")
###########################Accuracy和Loss可视化#################################
epoch = range(1, len(train_loss_history)+1)
fig, ax = plt.subplots(1, 2, figsize=(10,4))
ax[0].plot(epoch, train_loss_history, label='Train loss')
ax[0].plot(epoch, val_loss_history, label='Validation loss')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Loss')
ax[0].legend()
ax[1].plot(epoch, train_acc_history, label='Train acc')
ax[1].plot(epoch, val_acc_history, label='Validation acc')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Accuracy')
ax[1].legend()
#plt.savefig("loss-acc.pdf", dpi=300,format="pdf")
####################################混淆矩阵可视化#############################
from sklearn.metrics import classification_report, confusion_matrix
import math
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib.pyplot import imshow
# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions):
# 生成混淆矩阵
conf_numpy = confusion_matrix(labels, predictions)
# 将矩阵转化为 DataFrame
conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)
plt.figure(figsize=(8,7))
sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
plt.title('Confusion matrix',fontsize=15)
plt.ylabel('Actual value',fontsize=14)
plt.xlabel('Predictive value',fontsize=14)
def evaluate_model(model, dataloader, device):
model.eval() # 设置模型为评估模式
true_labels = []
pred_labels = []
# 遍历数据
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
# 前向
with torch.no_grad():
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
true_labels.extend(labels.cpu().numpy())
pred_labels.extend(preds.cpu().numpy())
return true_labels, pred_labels
# 获取预测和真实标签
true_labels, pred_labels = evaluate_model(model, dataloaders['val'], device)
# 计算混淆矩阵
cm_val = confusion_matrix(true_labels, pred_labels)
a_val = cm_val[0,0]
b_val = cm_val[0,1]
c_val = cm_val[1,0]
d_val = cm_val[1,1]
# 计算各种性能指标
acc_val = (a_val+d_val)/(a_val+b_val+c_val+d_val) # 准确率
error_rate_val = 1 - acc_val # 错误率
sen_val = d_val/(d_val+c_val) # 灵敏度
sep_val = a_val/(a_val+b_val) # 特异度
precision_val = d_val/(b_val+d_val) # 精确度
F1_val = (2*precision_val*sen_val)/(precision_val+sen_val) # F1值
MCC_val = (d_val*a_val-b_val*c_val) / (np.sqrt((d_val+b_val)*(d_val+c_val)*(a_val+b_val)*(a_val+c_val))) # 马修斯相关系数
# 打印出性能指标
print("验证集的灵敏度为:", sen_val,
"验证集的特异度为:", sep_val,
"验证集的准确率为:", acc_val,
"验证集的错误率为:", error_rate_val,
"验证集的精确度为:", precision_val,
"验证集的F1为:", F1_val,
"验证集的MCC为:", MCC_val)
# 绘制混淆矩阵
plot_cm(true_labels, pred_labels)
# 获取预测和真实标签
train_true_labels, train_pred_labels = evaluate_model(model, dataloaders['train'], device)
# 计算混淆矩阵
cm_train = confusion_matrix(train_true_labels, train_pred_labels)
a_train = cm_train[0,0]
b_train = cm_train[0,1]
c_train = cm_train[1,0]
d_train = cm_train[1,1]
acc_train = (a_train+d_train)/(a_train+b_train+c_train+d_train)
error_rate_train = 1 - acc_train
sen_train = d_train/(d_train+c_train)
sep_train = a_train/(a_train+b_train)
precision_train = d_train/(b_train+d_train)
F1_train = (2*precision_train*sen_train)/(precision_train+sen_train)
MCC_train = (d_train*a_train-b_train*c_train) / (math.sqrt((d_train+b_train)*(d_train+c_train)*(a_train+b_train)*(a_train+c_train)))
print("训练集的灵敏度为:",sen_train,
"训练集的特异度为:",sep_train,
"训练集的准确率为:",acc_train,
"训练集的错误率为:",error_rate_train,
"训练集的精确度为:",precision_train,
"训练集的F1为:",F1_train,
"训练集的MCC为:",MCC_train)
# 绘制混淆矩阵
plot_cm(train_true_labels, train_pred_labels)
################################模型性能参数计算################################
from sklearn import metrics
def test_accuracy_report(model, dataloader, device):
true_labels, pred_labels = evaluate_model(model, dataloader, device)
print(metrics.classification_report(true_labels, pred_labels, target_names=class_names))
test_accuracy_report(model, dataloaders['val'], device)
def train_accuracy_report(model, dataloader, device):
true_labels, pred_labels = evaluate_model(model, dataloader, device)
print(metrics.classification_report(true_labels, pred_labels, target_names=class_names))
train_accuracy_report(model, dataloaders['train'], device)
################################AUC曲线绘制####################################
from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math
from sklearn.metrics import roc_auc_score, auc
from sklearn.preprocessing import LabelBinarizer
def multiclass_roc_auc_score(y_test, y_pred, average="macro"):
# 判断 y_test 是否需要进行标签二值化
if len(np.unique(y_test)) > 2: # 假设 y_test 是类别标签,且类别数大于 2
lb = LabelBinarizer()
lb.fit(y_test)
y_test = lb.transform(y_test)
return roc_auc_score(y_test, y_pred, average=average)
def plot_roc(name, labels, predictions, **kwargs):
lb = LabelBinarizer()
labels = lb.fit_transform(labels) # one-hot 编码
# predictions 不需要进行标签二值化
# 计算ROC曲线和AUC值
fpr = dict()
tpr = dict()
roc_auc = dict()
class_num = len(class_names)
for i in range(class_num): # class_num是类别数目
fpr[i], tpr[i], _ = metrics.roc_curve(labels[:, i], predictions[:, i])
roc_auc[i] = metrics.auc(fpr[i], tpr[i])
for i in range(class_num):
plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
# 确保模型处于评估模式
model.eval()
def evaluate_model_pre(model, data_loader, device):
model.eval()
predictions = []
labels = []
with torch.no_grad():
for inputs, targets in data_loader:
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
# 使用 softmax 函数,转换成概率值
prob_outputs = torch.nn.functional.softmax(outputs, dim=1)
predictions.append(prob_outputs.detach().cpu().numpy())
labels.append(targets.detach().cpu().numpy())
return np.concatenate(predictions, axis=0), np.concatenate(labels, axis=0)
val_pre_auc, val_label_auc = evaluate_model_pre(model, dataloaders['val'], device)
train_pre_auc, train_label_auc = evaluate_model_pre(model, dataloaders['train'], device)
auc_score_val = multiclass_roc_auc_score(val_label_auc, val_pre_auc)
auc_score_train = multiclass_roc_auc_score(train_label_auc, train_pre_auc)
plot_roc('validation AUC: {0:.4f}'.format(auc_score_val), val_label_auc, val_pre_auc, color="red", linestyle='--')
plot_roc('training AUC: {0:.4f}'.format(auc_score_train), train_label_auc, train_pre_auc, color="blue", linestyle='--')
print("训练集的AUC值为:",auc_score_train, "验证集的AUC值为:",auc_score_val)
(b)输出结果:学习曲线
(c)输出结果:混淆矩阵
(d)输出结果:性能参数
(e)输出结果:ROC曲线
三、数据
链接:https://pan.baidu.com/s/1rqu15KAUxjNBaWYfEmPwgQ?pwd=xfyn
提取码:xfyn 文章来源:https://www.toymoban.com/news/detail-681071.html
文章来源地址https://www.toymoban.com/news/detail-681071.html
到了这里,关于第62步 深度学习图像识别:多分类建模(Pytorch)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!