hadoop的hdfs中避免因节点掉线产生网络风暴

这篇具有很好参考价值的文章主要介绍了hadoop的hdfs中避免因节点掉线产生网络风暴。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

hadoop的hdfs中避免因节点掉线产生网络风暴

控制节点掉线RPC风暴的参数
三个参数都是hdfs-site.xml中参数,具体可以参考apache hadoop官网,其实块的复制速度有两个方面决定,一是namenode分发任务的速度,二则是datanode之间进行复制的速度。前者可以理解成入口,后者可以当成出口。
1.入口参数:从namenode层面控制任务分发,这个参数修改必须重启namenode,不需要重启datanode.

dfs.namenode.replication.work.multiplier.per.iteration 
这个参数apache hadoop默认值2,cdh集群默认值10

这个参数决定了当NN与DN进行心跳(3s)发送任务列表时,告诉每个DN可以进行复制的block数量。比如集群有500个节点,这个值设置为10,那么一次心跳namnode可以发送datanode复制的数据块数量是10*500=5000块。假如一个节点掉线/退役有800000块block需要复制,则namenode需要多长时间可以将待复制块的任务分发完给datanode呢。
极限计算的结果:

任务分发时间=待复制block总数/(集群活跃dn*参数值)*心跳时间
time=800000/(500*10)=160次心跳*3s/每次心跳=480s=8分钟

所以节点越多,会分发任务越快,分发速度跟节点数和这个参数都成正比

2.出口参数:相比上面从nanode任务分发控制,下面两个使用datanode层面控制,这两个参数也需要重启namenode

1.dfs.namenode.replication.max-streams

apache hadoop默认值是2,cdh集群默认20。

这个参数含义是控制datanode节点进行数据复制的最大线程数,从上面我们知道block的复制优先级分成5种。这个参数控制不包含最高优先级的块复制。即除最高优先级的复制流限制

2.dfs.namenode.replication.max-streams-hard-limit

这个值apache hadoop默认值2,cdh集群默认值40

这个参数含义是控制datanode所有优先级块复制的流个数,包含最高优先级;一般上面和上面两个参数互相的配合使用。文章来源地址https://www.toymoban.com/news/detail-681143.html

到了这里,关于hadoop的hdfs中避免因节点掉线产生网络风暴的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Hadoop理论及实践-HDFS读写数据流程(参考Hadoop官网)

    主节点和副本节点通常指的是Hadoop分布式文件系统(HDFS)中的NameNode和DataNode。 NameNode(主节点):NameNode是Hadoop集群中的一个核心组件,它负责管理文件系统的命名空间和元数据。它记录了文件的目录结构、文件的块分配信息以及每个文件块所在的DataNode等关键信息。NameNo

    2024年02月14日
    浏览(54)
  • 大数据技术之Hadoop(HDFS)——超详细

    1.1 HDFS产出背景及定义 1)HDFS产生背景 先给大家介绍一下什么叫HDFS,我们生活在信息爆炸的时代,随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这

    2024年02月03日
    浏览(56)
  • 0201hdfs集群部署-hadoop-大数据学习

    下面我们配置下单namenode节点hadoop集群,使用vmware虚拟机环境搭建。vmware虚拟机的配置,在下面链接2有,或者自行查阅文档。hadoop安装包可到官网下载,当前相关软件环境如下: 软件 版本 说明 hadoop 3.3.4 jar包 vmware 15.5 虚拟机 centos 7.6 服务器操作系统 xshell 6 远程连接 jdk 1.8

    2024年02月11日
    浏览(47)
  • HDFS 跨集群数据同步(hive,hadoop)

    两个不同的HDFS 集群数据迁移( A集群的数据 - B 集群) 采用的是 SHELL 脚本  按表进行; 日期分区进行; #!/bin/bash ##################### #创建人:DZH #创建日期: 2020-04 #内容: 数据迁移 ##################### ##################################### [ \\\"$#\\\" -ne 0 ] FILE=$1 path=$(cd `dirname $0`; pwd) ############## 获取执

    2024年04月27日
    浏览(60)
  • FPGA设计中锁存器产生、避免与消除

      锁存器的产生主要有以下两种情况:(1)组合逻辑中使用保持状态;(2)组合逻辑中的if-else语句或case语句未列出所有可能性;   对于组合逻辑中,如果使用if-else语句,未补全else语句,则默认在其他条件下,数据均保持为原来的状态,那么也会产生锁存器。   而

    2024年02月03日
    浏览(42)
  • 尚硅谷大数据技术Hadoop教程-笔记03【Hadoop-HDFS】

    视频地址: 尚硅谷大数据Hadoop教程(Hadoop 3.x安装搭建到集群调优) 尚硅谷大数据技术Hadoop教程-笔记01【大数据概论】 尚硅谷大数据技术Hadoop教程-笔记02【Hadoop-入门】 尚硅谷大数据技术Hadoop教程-笔记03【Hadoop-HDFS】 尚硅谷大数据技术Hadoop教程-笔记04【Hadoop-MapReduce】 尚硅谷

    2023年04月08日
    浏览(98)
  • Hadoop HDFS:海量数据的存储解决方案

    在大数据时代,数据的存储与处理成为了业界面临的一大挑战。Hadoop的分布式文件系统(Hadoop Distributed File System,简称HDFS)作为一个高可靠性、高扩展性的文件系统,提供了处理海量数据的有效解决方案。本文将深入探讨HDFS的设计原理、架构组成、核心功能以及实际应用场

    2024年04月23日
    浏览(43)
  • hadoop之hdfs生产数据块损坏修复方法

    1、手动修复 检查数据块丢失情况 hdfs fsck / 修复指定路径的hdfs文件,尝试多次 hdfs debug recoverLease -path 文件位置 -retries 重复次数 删除所有损坏的块的数据文件 hdfs fsck / -delete 2、自动修复 hdfs会自动修复损坏的数据块,当数据块损坏后, DN节点执行directoryscan(datanode进行内村和

    2023年04月11日
    浏览(63)
  • Elasticsearch 为什么会产生文档版本冲突?如何避免?

    先让大家直观的看到 Elasticsearch 文档版本冲突。 1.1 场景1:create 场景 1.2 场景2:批量更新场景模拟 模拟脚本1:循环写入数据 index.sh。 模拟脚本2:循环update_by_query 批量更新数据 update.sh。 由于:写入脚本 index.sh 比更新脚本 update.sh (执行一次,休眠1秒)执行要快,所以更新

    2023年04月08日
    浏览(48)
  • DolphinScheduler的Master节点掉线问题排查

    问题描述:周一早上,发现DolphinScheduler的任务执行时间停留在了上周五,再一看,Master节点全部掉线。 解决步骤: 1.重启DolphinScheduler,提示dolphinscheduler-master-server-hadoop001.out 和 dolphinscheduler-master-server-hadoop002.out 没权限。 2.给dolphinscheduler-master-server-hadoop001.out 和 dolphinschedu

    2024年02月11日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包