【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)

这篇具有很好参考价值的文章主要介绍了【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


引言

承接前文,我们继续学习第二章,一维随机变量及其分布的第二部分内容。


三、常见的随机变量及其分布

3.1 常见的离散型随机变量及其分布律

(一)(0-1)分布

设随机变量 X X X 的可能取值为 0 或 1 ,且其概率为 P P P { X = 1 X=1 X=1 } = p , =p, =p, P P P { X = 0 X=0 X=0 } = 1 − p ( 0 < p < 1 =1-p(0 < p < 1 =1p(0<p<1 ,称 X X X 服从(0-1)分布,记为 X ∼ B ( 1 , p ) . X \sim B(1,p). XB(1,p).

(二)二项分布

设随机变量 X X X 的分布律为 P P P { X = k X=k X=k } = C n k p k ( 1 − p ) n − k =C_n^kp^k(1-p)^{n-k} =Cnkpk(1p)nk ,其中 k = 0 , 1 , 2 , … , n , 0 < p < 1 , k=0,1,2,\dots,n,0 < p < 1, k=0,1,2,,n,0<p<1, 称随机变量 X X X 服从二项分布,记为 X ∼ B ( n , p ) . X \sim B(n,p). XB(n,p).

回忆一下第一章的伯努利概型,也是二项分布。

(三)泊松分布

设离散型随机变量 X X X 的分布律为 P { X = k } = λ k k ! e − λ , P\{X=k\}=\frac{\lambda^k}{k!}e^{-\lambda}, P{X=k}=k!λkeλ, 其中, λ > 0 , k = 0 , 1 , 2 , … , n , \lambda > 0,k=0,1,2,\dots,n, λ>0,k=0,1,2,,n, 称随机变量 X X X 服从参数为 λ \lambda λ 的泊松分布,记为 X ∼ P ( λ ) . X \sim P(\lambda). XP(λ).

(四)几何分布

设离散型随机变量 X X X 的分布律为 P { X = k } = p ( 1 − p ) k − 1 , P\{X=k\}=p(1-p)^{k-1}, P{X=k}=p(1p)k1, 其中, k = 1 , 2 , … , n , k=1,2,\dots,n, k=1,2,,n, 称随机变量 X X X 服从几何分布,记为 X ∼ G ( p ) . X \sim G(p). XG(p).

服从几何分布的随机变量 X X X 可以这么理解:设伯努利试验中只有两种结果 A , A ‾ , P ( A ) = p A,\overline{A},P(A)=p A,A,P(A)=p ,则 X X X 表示伯努利试验中 A A A 首次发生时的试验次数。
比如, X = 2 X=2 X=2 ,表示试验做了两次才第一次发生,也就是第一次试验没发生,第二次试验发生; X = n X=n X=n ,表示前 n − 1 n-1 n1 次试验没发生,第 n n n 次试验发生。这样就好理解了,公式也一下就记得住。

(五)超几何分布

设离散型随机变量 X X X 的分布律为 P { X = k } = C M k ⋅ C N − M n − k C N n , P\{X=k\}=\frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n}, P{X=k}=CNnCMkCNMnk, 其中, M , N , k , n M,N,k,n M,N,k,n 为自然数,且 M ≤ N , m a x { N − M , 0 } ≤ k ≤ m i n { M , n } , n ≤ N M \leq N,max\{N-M,0\} \leq k \leq min\{M,n\},n \leq N MN,max{NM,0}kmin{M,n},nN , 称随机变量 X X X 服从超几何分布,记为 X ∼ H ( n , M , N ) . X \sim H(n,M,N). XH(n,M,N).

3.2 常见的连续型随机变量及其概率密度

(一)均匀分布

设随机变量 X X X 的概率密度为 f ( x ) = { 1 b − a , a ≤ x ≤ b 0 , e l s e , f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & else \\ \end{cases}, f(x)={ba1,0,axbelse, 称随机变量 X X X 在区间 ( a , b ) (a,b) (a,b) 内服从均匀分布,记为 X ∼ U ( a , b ) . X \sim U(a,b). XU(a,b).

若随机变量 X ∼ U ( a , b ) X \sim U(a,b) XU(a,b),则其分布函数为 F ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , x ≥ b F(x)=\begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leq x \leq b \\ 1,& x \geq b\\ \end{cases} F(x)= 0,baxa,1,x<aaxbxb

(二)指数分布

设随机变量 X X X 的概率密度为 f ( x ) = { λ e − λ x x > 0 0 , x ≤ 0 ( λ > 0 ) f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0, & x \leq 0 \\ \end{cases}(\lambda > 0) f(x)={λeλx0,x>0x0(λ>0) 称随机变量 X X X 服从参数为 λ \lambda λ 的指数分布,记为 X ∼ E ( λ ) . X \sim E(\lambda). XE(λ).

若随机变量 X ∼ E ( λ ) X \sim E(\lambda) XE(λ),则其分布函数为 F ( x ) = { 1 − e − λ x , x ≥ 0 0 , x < 0 F(x)=\begin{cases} 1-e^{-\lambda x}, & x \geq 0 \\ 0,& x < 0\\ \end{cases} F(x)={1eλx,0,x0x<0

(三)正态分布

设随机变量 X X X 的概率密度为 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ( − ∞ < x < + ∞ ) , f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}(-\infty < x < +\infty), f(x)=2π σ1e2σ2(xμ)2(<x<+), 称随机变量 X X X 服从正态分布,记为 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2),其概率密度函数如下图所示:
【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布),# 数学一,概率论,常见随机变量分布,正态分布,指数分布,泊松分布,随机变量函数,均匀分布
特别地,若 μ = 0 , σ = 1 \mu =0,\sigma=1 μ=0,σ=1 ,称随机变量 X X X 服从标准正态分布,记为 X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1) ,其概率密度为 φ ( x ) = 1 2 π e − x 2 2 ( − ∞ < x < + ∞ ) , \varphi(x)= \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}(-\infty < x < +\infty), φ(x)=2π 1e2x2(<x<+), 其概率密度函数如下图所示:
【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布),# 数学一,概率论,常见随机变量分布,正态分布,指数分布,泊松分布,随机变量函数,均匀分布
分布函数为 Φ ( x ) = ∫ − ∞ x φ ( t ) d t . \varPhi(x)=\int_{-\infty}^x\varphi(t)dt. Φ(x)=xφ(t)dt. 正态分布具有如下性质:

(1)若 X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1) ,则其概率密度函数 φ ( x ) \varphi(x) φ(x) 为偶函数,且 P { X ≤ 0 } = Φ ( 0 ) = 0.5 , P\{X \leq 0 \}=\varPhi(0)=0.5, P{X0}=Φ(0)=0.5, P { X ≤ − a } = Φ ( − a ) = P { X > a } = 1 − Φ ( a ) . P\{X \leq-a\}=\varPhi(-a)=P\{X > a\}=1-\varPhi(a). P{Xa}=Φ(a)=P{X>a}=1Φ(a). (2)若随机变量 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) ,则 P { X ≤ μ } = P { X > μ } = 0.5 , P\{X \leq \mu\}=P\{X > \mu\}=0.5, P{Xμ}=P{X>μ}=0.5, 即正态分布的密度函数的图像关于 x = μ x=\mu x=μ 对称。

(3)若随机变量 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) ,则 X − μ σ ∼ N ( 0 , 1 ) . \frac{X-\mu}{\sigma} \sim N(0,1). σXμN(0,1).

(4)若随机变量 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) ,则 P { a < X ≤ b } = F ( b ) − F ( a ) = Φ ( b − μ σ ) − Φ ( a − μ σ ) . P\{a < X \leq b\}=F(b)-F(a)=\varPhi(\frac{b-\mu}{\sigma})-\varPhi(\frac{a-\mu}{\sigma}). P{a<Xb}=F(b)F(a)=Φ(σbμ)Φ(σaμ). (5) Φ ( a ) + Φ ( b ) = { < 1 , a + b < 0 = 1 , a + b = 0   > 1 , a + b > 0 \varPhi(a)+\varPhi(b)=\begin{cases} <1, & a+b< 0 \\ =1,& a+b= 0\\ \ >1 ,& a+b> 0\\ \end{cases} Φ(a)+Φ(b)= <1,=1, >1,a+b<0a+b=0a+b>0


四、随机变量函数的分布

X X X 为随机变量,其分布已知,称 Y = φ ( X ) Y=\varphi(X) Y=φ(X) 为随机变量 X X X 的函数,研究随机变量 Y Y Y 的分布及随机变量函数的分布。

(一)离散型随机变量函数的分布

X X X 为随机变量, Y = φ ( X ) Y=\varphi(X) Y=φ(X) ,只要根据 X X X 的可能取值及概率求出 Y Y Y 的可能取值及概率,即可得到 Y Y Y 的分布律。

(二)连续型随机变量函数的分布

X X X 为连续型随机变量,其概率密度为 f ( x ) f(x) f(x) ,又 Y = φ ( x ) Y=\varphi(x) Y=φ(x) ,求随机变量 Y Y Y 的分布时,先求 Y Y Y 的分布函数 P { Y ≤ y } = P { φ ( X ) ≤ y } , P\{Y \leq y\}=P\{\varphi(X) \leq y\}, P{Yy}=P{φ(X)y}, 再通过 X X X 的分布求出 Y Y Y 的分布。文章来源地址https://www.toymoban.com/news/detail-681247.html

到了这里,关于【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【考研数学】概率论与数理统计 —— 第七章 | 参数估计(2,参数估计量的评价、正态总体的区间估计)

    设 X X X 为总体, ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,cdots ,X_n) ( X 1 ​ , X 2 ​ , ⋯ , X n ​ ) 为来自总体 X X X 的简单随机样本, θ theta θ 为未知参数,设 θ ^ = φ ( X 1 , X 2 , ⋯   , X n ) widehat{theta}=varphi(X_1,X_2,cdots,X_n) θ = φ ( X 1 ​ , X 2 ​ , ⋯ , X n ​ ) 为参数 θ theta θ 的一个点估

    2024年02月06日
    浏览(47)
  • 【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(2,常见随机变量及其分布 | 随机变量函数的分布)

    承接前文,我们继续学习第二章,一维随机变量及其分布的第二部分内容。 (一)(0-1)分布 设随机变量 X X X 的可能取值为 0 或 1 ,且其概率为 P P P { X = 1 X=1 X = 1 } = p , =p, = p , P P P { X = 0 X=0 X = 0 } = 1 − p ( 0 p 1 =1-p(0 p 1 = 1 − p ( 0 p 1 ,称 X X X 服从(0-1)分布,记为 X ∼ B

    2024年02月11日
    浏览(46)
  • 【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)

    隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个月了。主要是想着高数做到多元微分和二重积分题目,再来看这个概率论二维的来,更好理解。不过没想到内容太多了,到现在也只到二元微分的进度。 定义 1 —— 二维随机变量。设 X , Y X,Y X , Y 为定义于同一样本空

    2024年02月07日
    浏览(51)
  • 概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

    设随机变量X的所有可能取值为0与1两个值,其分布律为 若分布律如上所示,则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1,p) 0-1分布的分布律利用表格法表示为: X 0 1 P 1-P P 0-1分布的数学期望 E(X) = 0 * (1 - p) + 1 * p = p 二项分布的分布律如下所示: 其中P是事件在一次试验

    2024年02月05日
    浏览(38)
  • 概率论与数理统计_数理统计部分

    目录 相关符号 相关概念与例题 背景 总体与样本 统计量 统计量 常用统计量【重点】 直方图 经验分布函数 正态总体的抽样分布 前言复习 𝝌𝟐分布 𝒕分布 𝑭分布 上侧分位点 抽样分布定理【重点】 点估计 前言 点估计【重点】 矩估计方法【重点】 极大似然估计方法【重

    2024年02月10日
    浏览(42)
  • 概率论与数理统计 第一章 概率论的基本概念

    1.1.1 前言 1.研究对象: 确定性现象:必然发生或不发生 随机现象:个别试验结果呈现不确定性,大量试验结果呈现统计规律性 2.概率论与数理统计: ​ 该学科是研究和揭示随机现象统计规律性的学科。 1.1.2 随机试验 1.定义: 可以在相同条件下重复进行; 每次试验的结果可

    2024年03月20日
    浏览(55)
  • 概率论与数理统计期末复习

    泊松分布 连续性随机变量概率密度 概率密度积分求分布函数,概率密度函数积分求概率,分布函数端点值相减为概率 均匀分布 正太分布标准化 例题 离散型随机变量函数的分布 概率密度求概率密度 先积分,再求导 例题 二维离散型随机变量的分布 联合分布律 离散型用枚举

    2024年02月08日
    浏览(70)
  • 【概率论和数理统计-基本概念】

    自然界的 现象 分为两类,一类是 确定现象 ,如正负电荷的吸引;一类是 随机现象 ,如抛硬币出现正负。 研究后发现,随机现象也有 统计规律性 。 随机试验 随机现象(通过随机试验,来研究随机现象。) 样本空间 样本点 随机事件(特定情况下,样本空间的一个子集。

    2024年02月03日
    浏览(53)
  • 《概率论与数理统计》学习笔记

    重温《概率论与数理统计》进行查漏补缺,并对其中的概念公式等内容进行总结,以便日后回顾。 目录 第一章 概率论的基本概念 第二章 随机变量及其分布 第三章  多维随机变量及其分布 第四章  随机变量的数字特征 第五章  大数定律及中心极限定理 第六章  样本及抽样

    2024年02月03日
    浏览(41)
  • 概率论与数理统计:第一章:随机事件及其概率

    ①古典概型求概率 ②几何概型求概率 ③七大公式求概率 ④独立性 (1)随机试验、随机事件、样本空间 1. 随机试验 E 2. 随机事件 A、B、C ① 必然事件 Ω : P ( Ω ) = 1 P(Ω)=1 P ( Ω ) = 1 ② 不可能事件 Ø : P ( Ø ) = 0 P(Ø)=0 P ( Ø ) = 0 3.样本空间 ① 样本点 ω = 基本事件 ② 样本空间

    2024年02月14日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包