【算法】经典的八大排序算法

这篇具有很好参考价值的文章主要介绍了【算法】经典的八大排序算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

点击链接 可视化排序 动态演示各个排序算法来加深理解,大致如下

【算法】经典的八大排序算法,数据结构与算法,算法,排序算法,数据结构

一,冒泡排序(Bubble Sort)

原理

  • 冒泡排序(Bubble Sort)是一种简单的排序算法,它通过多次比较和交换相邻元素的方式,将最大(或最小)的元素逐步冒泡到数组的一端。每一轮冒泡将会将未排序部分中最大(或最小)的元素“浮”到正确的位置。

算法步骤

  1. 从数组的第一个元素开始,依次比较相邻的两个元素。
  2. 如果前一个元素比后一个元素大(或小,取决于排序顺序),则交换这两个元素。
  3. 继续向后遍历,对每一对相邻元素重复步骤 2。
  4. 重复步骤 1 到 3,直到没有元素需要交换,整个数组就是有序的。

算法实现

#include <iostream>
#include <vector>

// 冒泡排序
void bubbleSort(std::vector<int>& arr) {
    int n = arr.size();
    
    for (int i = 0; i < n - 1; ++i) {
        // 在每一轮中,比较相邻元素并交换
        for (int j = 0; j < n - i - 1; ++j) {
            if (arr[j] > arr[j + 1]) {
                std::swap(arr[j], arr[j + 1]);
            }
        }
    }
}

性能分析

  • 时间复杂度:
    • 冒泡排序的时间复杂度在最坏和平均情况下都为 O(n^2),其中 n 是待排序元素的数量。每次遍历需要进行 n-1 次比较,而需要执行 n-1 次遍历。
    • 最好情况下,如果列表本身已经有序,冒泡排序仍然需要进行 n-1 次遍历,但由于没有发生交换,每次遍历只需要进行 n-1、n-2、...、2、1 次比较,时间复杂度为 O(n)。
  • 空间复杂度:
    • 冒泡排序的空间复杂度为 O(1),只需要常数级别的额外空间。
  • 稳定性:
    • 冒泡排序是稳定的排序算法,因为它在相邻元素比较时仅在必要时才进行交换。

二,选择排序(Selection Sort)

原理

  • 选择排序(Selection Sort)是一种简单的排序算法,它将待排序数组分为已排序和未排序两部分,然后从未排序部分选择最小(或最大)的元素,与已排序部分的最后一个元素交换位置。每次交换都会将一个元素归位,直到整个数组有序。

算法步骤

  1. 初始时,将整个序列分为已排序和未排序两部分,已排序为空,未排序包含所有元素。
  2. 在未排序部分中,找到最小(或最大)的元素。
  3. 将找到的最小元素与未排序部分的第一个元素交换位置,将其放到已排序部分的末尾。
  4. 重复执行步骤 2 和 3,直到未排序部分为空,整个序列变得有序。

算法实现

#include <iostream>
#include <vector>

// 选择排序
void selectionSort(std::vector<int>& arr) {
    int n = arr.size();
    
    for (int i = 0; i < n - 1; ++i) {
        int minIndex = i; // 记录最小元素的索引
        
        // 在未排序部分找到最小元素的索引
        for (int j = i + 1; j < n; ++j) {
            if (arr[j] < arr[minIndex]) {
                minIndex = j;
            }
        }
        
        // 将最小元素与当前位置交换
        std::swap(arr[i], arr[minIndex]);
    }
}

性能分析

  • 时间复杂度:
    • 选择排序的时间复杂度在最好、最坏和平均情况下都是 O(n^2),其中 n 是待排序元素的数量。
  • 空间复杂度:
    • 选择排序的空间复杂度为 O(1),只需要常数级别的额外空间。
  • 稳定性:
    • 选择排序是不稳定的排序算法,因为在选择最小(或最大)元素的过程中,相同值的元素可能会交换位置。

三,插入排序(Insertion Sort)

原理

  • 插入排序(Insertion Sort)是一种简单的排序算法,它将待排序数组分为已排序和未排序两部分,然后逐个将未排序部分的元素插入到已排序部分的正确位置,使得已排序部分始终保持有序。

算法步骤

  1. 初始时,将第一个元素视为已排序部分,其余元素视为未排序部分。
  2. 从未排序部分中取出一个元素,将其插入到已排序部分的适当位置,使得插入后的已排序部分仍然保持有序。
  3. 重复步骤 2,直到未排序部分为空,整个序列变得有序。

算法实现

#include <iostream>
#include <vector>

// 插入排序
void insertionSort(std::vector<int>& arr) {
    int n = arr.size();
    
    for (int i = 1; i < n; ++i) {
        int current = arr[i]; // 当前要插入的元素
        int j = i - 1; // 已排序部分的末尾索引
        
        // 将元素插入到正确位置
        while (j >= 0 && arr[j] > current) {
            arr[j + 1] = arr[j];
            j--;
        }
        arr[j + 1] = current;
    }
}

性能分析

  • 时间复杂度:
    • 插入排序的时间复杂度在最好情况下是 O(n),最坏和平均情况下是 O(n^2),其中 n 是待排序元素的数量。
  • 空间复杂度:
    • 插入排序的空间复杂度为 O(1),只需要常数级别的额外空间。
  • 稳定性:
    • 插入排序是稳定的排序算法,因为它在插入元素时相同值的元素不会改变相对顺序。

四,希尔排序(Shell Sort)

原理

  • 希尔排序(Shell Sort)是一种改进的插入排序算法,它通过将数组分成多个子序列来排序,然后逐步缩小子序列的间隔,最终将整个数组排序。希尔排序的核心思想是使数组中任意间隔 h 的元素都是有序的,当 h 逐步减小到 1 时,整个数组变为有序。

算法步骤

  1. 选择一个增量序列(通常为递减的整数序列),例如 [n/2, n/4, n/8, ...],其中 n 是数组的长度。
  2. 对每个增量进行迭代,将数组分成多个子数组,每个子数组中的元素间隔为增量。
  3. 对每个子数组进行插入排序,将子数组中的元素插入到已排序部分的适当位置。
  4. 重复步骤 2 和 3,不断减小增量,直到增量为 1,此时整个数组被视为一个子数组,进行最后一次插入排序。

算法实现

#include <iostream>

void shellSort(int arr[], int n) {
    for (int gap = n / 2; gap > 0; gap /= 2) {
        // 使用插入排序对子数组进行排序
        for (int i = gap; i < n; ++i) {
            int temp = arr[i];
            int j = i;
            
            // 移动元素,寻找插入位置
            while (j >= gap && arr[j - gap] > temp) {
                arr[j] = arr[j - gap];
                j -= gap;
            }
            
            arr[j] = temp; // 将元素插入到合适的位置
        }
    }
}

性能分析

  • 时间复杂度:
    • 希尔排序的时间复杂度依赖于所选的增量序列。最好的已知增量序列的时间复杂度是 O(n^1.3),平均情况下的时间复杂度较难分析,但它通常优于 O(n^2) (介于 O(n log n) 和 O(n^2) 之间)的插入排序。具体取决于增量序列的选择。
  • 空间复杂度:
    • 希尔排序的空间复杂度为 O(1),只需要常数级别的额外空间。
  • 稳定性:
    • 希尔排序不是稳定的排序算法,因为在交换元素的过程中可能会改变相同值元素的相对顺序。

五,归并排序(Merge Sort)

原理

  • 归并排序(Merge Sort)是一种分治策略的排序算法,它将待排序数组不断划分为两个子数组,然后将这些子数组逐步合并成一个有序数组。归并排序的核心思想是将两个有序的子数组合并成一个有序的数组,这样逐步合并,最终得到整个数组有序。

算法步骤

  1. 分割:将待排序数组递归地分割成较小的子数组,直到每个子数组只包含一个元素。
  2. 合并:将两个有序的子数组合并成一个有序数组。合并过程中,分别从两个子数组中取出较小的元素,放入结果数组中。

算法实现

#include <iostream>
#include <vector>

// 合并两个有序子数组
void merge(std::vector<int>& arr, int left, int mid, int right) {
    int leftCount = mid - left + 1;    // 左边子数组大小
    int rightCount = right - mid;      // 右边子数组大小
    
    // 创建临时数组存放两个子数组的元素
    std::vector<int> leftArr(leftCount), rightArr(rightCount);
    for (int i = 0; i < leftCount; ++i)
        leftArr[i] = arr[left + i];
    for (int i = 0; i < rightCount; ++i)
        rightArr[i] = arr[mid + 1 + i];
    
    // 合并两个子数组
    int i = 0, j = 0, k = left;
    while (i < leftCount && j < rightCount) {
        if (leftArr[i] <= rightArr[j]) {
            arr[k++] = leftArr[i++];
        } else {
            arr[k++] = rightArr[j++];
        }
    }
    
    // 将剩余的元素拷贝到结果数组中
    while (i < leftCount) {
        arr[k++] = leftArr[i++];
    }
    while (j < rightCount) {
        arr[k++] = rightArr[j++];
    }
}

// 归并排序
void mergeSort(std::vector<int>& arr, int left, int right) {
    if (left < right) {
        int mid = left + (right - left) / 2;
        // 递归地对左右子数组进行排序
        mergeSort(arr, left, mid);
        mergeSort(arr, mid + 1, right);
        // 合并两个有序子数组
        merge(arr, left, mid, right);
    }
}

性能分析

  • 时间复杂度:
    • 归并排序的时间复杂度是稳定的,无论数据的分布如何,都是 O(n log n),其中 n 是待排序元素的数量。
  • 空间复杂度:
    • 归并排序需要额外的空间来存储临时数组,因此其空间复杂度是 O(n)。
  • 稳定性:
    • 归并排序是稳定的排序算法,因为在合并两个子数组时,相同值的元素不会改变相对顺序。

六,快速排序(Quick Sort)

原理

  • 快速排序(Quick Sort)是一种基于分治思想的排序算法,它通过选择一个基准元素,将数组划分为小于基准和大于基准的两部分,然后递归地对这两部分进行排序。在每一次划分后,基准元素会被放置在最终的正确位置上。

算法步骤

  1. 选择基准元素:从数组中选择一个基准元素,通常选择第一个或最后一个元素。
  2. 分区:将数组划分为小于基准和大于基准的两部分,使得基准元素位于正确的位置上。
  3. 递归排序:对小于基准和大于基准的两部分分别递归地应用快速排序算法。
  4. 合并:不需要合并步骤,因为在分区过程中已经将数组划分为有序的部分。

算法实现

#include <iostream>
#include <vector>

// 分区函数,返回基准元素的正确位置
int partition(std::vector<int>& arr, int low, int high) {
    int pivot = arr[low]; // 选择第一个元素作为基准
    while (low < high)
    {
        while (low<high && arr[high]>=pivot)--high;
        arr[low] = arr[high];   // 将小于基准的元素移到左边
        while (low<high && arr[low]<=pivot)++low;
        arr[high] = arr[low];   // 将大于基准的元素移到右边
    }

    // 将基准元素放到正确的位置上
    arr[low] = pivot;
    return low; // 返回存放基准的最终位置
}

// 快速排序
void quickSort(std::vector<int>& arr, int low, int high) {
    if (low < high) {
        int pivotIndex = partition(arr, low, high); // 基准元素的正确位置
        // 对基准左边和右边的部分分别递归进行排序
        quickSort(arr, low, pivotIndex - 1);
        quickSort(arr, pivotIndex + 1, high);
    }
}

性能分析

  • 时间复杂度:
    • 平均情况下,快速排序的时间复杂度是 O(n log n),其中 n 是待排序元素的数量。
    • 在最坏情况下(数组已经有序或接近有序),快速排序的时间复杂度可能退化到 O(n^2)。
  • 空间复杂度:
    • 快速排序的空间复杂度主要取决于递归调用的栈空间,通常为 O(log n)。
    • 在最坏情况下,递归栈的深度可能达到 n,空间复杂度为 O(n)。
  • 稳定性:
    • 快速排序是不稳定的排序算法,因为在分区过程中可能改变相同元素的相对顺序。

七,堆排序(Heap Sort)

原理

  • 堆排序(Heap Sort)是一种基于二叉堆的排序算法。它将待排序数组构建成一个二叉堆,然后不断从堆顶取出最大(或最小)元素,将其放置到已排序部分的末尾,直到整个数组有序。

算法步骤

  1. 构建最大堆:将待排序数组看作完全二叉树,从最后一个非叶子节点开始,逐步向上调整,使得每个节点都大于其子节点。
  2. 不断从堆顶取出最大元素:每次将堆顶元素与堆末尾元素交换,然后将堆的大小减一,再进行堆化操作,将最大元素移至正确位置。
  3. 重复步骤 2,直到堆中只剩一个元素,此时整个数组有序。

算法实现

#include <iostream>
#include <vector>

// 交换元素
void swap(int& a, int& b) {
    a = a + b;
    b = a - b;
    a = a - b;
}

// 对以 root 为根的子树进行堆化
void heapify(std::vector<int>& arr, int n, int root) {
    int largest = root; // 初始化最大元素为根节点
    
    while (largest < n) {
        int left = 2 * root + 1; // 左子节点索引
        int right = 2 * root + 2; // 右子节点索引
        
        // 找到左右子节点中较大的元素索引
        if (left < n && arr[left] > arr[largest]) {
            largest = left;
        }
        if (right < n && arr[right] > arr[largest]) {
            largest = right;
        }
        
        // 如果最大元素不是根节点,则交换元素
        if (largest != root) {
            swap(arr[root], arr[largest]);
            root = largest; // 继续向下调整
        } else {
            break; // 堆结构已经满足,退出循环
        }
    }
}

// 堆排序
void heapSort(std::vector<int>& arr) {
    int n = arr.size();
    
    // 构建大根堆,从最后一个非叶子节点开始
    for (int i = n / 2 - 1; i >= 0; --i) {
        heapify(arr, n, i);
    }
    
    // 逐步取出最大元素并进行堆化
    for (int i = n - 1; i > 0; --i) {
        swap(arr[0], arr[i]); // 将堆顶元素移至已排序部分的末尾
        heapify(arr, i, 0); // 对剩余的部分进行堆化
    }
}

性能分析

  • 时间复杂度:
    • 堆排序的时间复杂度在最好、最坏和平均情况下都是 O(n log n),其中 n 是待排序元素的数量。
  • 空间复杂度:
    • 堆排序的空间复杂度为 O(1),只需要常数级别的额外空间。
  • 稳定性:
    • 堆排序通常是不稳定的,因为堆化操作可能改变相同元素的相对顺序。然而,通过一些额外的操作可以实现稳定性。

八,基数排序(Counting Sort)

原理

  • 基数排序(Radix Sort)是一种非比较的整数排序算法,它根据数字的每个位上的值来对元素进行排序。基数排序可以看作是桶排序的扩展,它先按照最低位进行排序,然后逐步移到更高位,直到所有位都考虑完毕。

算法步骤

  1. 找到最大数的位数:首先,找到待排序数组中最大数的位数,这将决定排序的轮数。
  2. 按位排序:从低位到高位,依次对每一位进行计数排序(或桶排序),将元素分配到不同的桶中。
  3. 合并桶:将每一轮排序后的桶中的元素按顺序合并成一个新的数组。
  4. 重复步骤 2 和 3,直到所有位都考虑完毕,得到有序数组。

算法实现

#include <iostream>
#include <vector>
#include <queue>

// 找到数组中的最大数
int findMax(std::vector<int>& arr) {
    int max = arr[0];
    for (int num : arr) {
        if (num > max) {
            max = num;
        }
    }
    return max;
}

// 基数排序
void radixSort(std::vector<int>& arr) {
    int n = arr.size();
    int max = findMax(arr);
    int exp = 1; // 用于获取每个位数的值

    while (max / exp > 0) {
        // 创建桶队列,每个桶用于存放某个位数上的元素
        std::vector<std::queue<int>> buckets(10);   // 使用10个桶,每个桶代表一个数字(0到9)

        // 将元素分配到桶中
        for (int i = 0; i < n; ++i) {
            int bucketIndex = (arr[i] / exp) % 10; // 计算当前位数的值,作为桶的索引
            buckets[bucketIndex].push(arr[i]); // 将元素放入对应的桶中
        }

        // 从桶中取回元素到原数组
        int index = 0;
        for (int i = 0; i < 10; ++i) {
            while (!buckets[i].empty()) {
                arr[index++] = buckets[i].front(); // 取出队列头部元素,放入原数组
                buckets[i].pop(); // 弹出队列头部元素
            }
        }

        exp *= 10; // 移到下一个位数
    }
}

性能分析文章来源地址https://www.toymoban.com/news/detail-681249.html

  • 时间复杂度:
    • 基数排序的时间复杂度取决于位数和基数的大小。对于位数为 k,基数为 r 的情况,时间复杂度为 O(k * (n + r))。
  • 空间复杂度:
    • 基数排序的空间复杂度为 O(n + r),其中 n 是待排序元素的数量,r 是基数的大小。
  • 稳定性:
    • 基数排序是稳定的排序算法,因为在同一位数上的排序时,相同值元素的相对顺序不会改变。

到了这里,关于【算法】经典的八大排序算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】八大排序之简单选择排序算法

    🦄 个人主页 :修修修也 🎏 所属专栏 :数据结构 ⚙️ 操作环境 : Visual Studio 2022 目录 一.简单选择排序简介及思路 二.简单选择排序的代码实现 三.简单选择排序的优化 四.简单选择排序的时间复杂度分析 结语 简单选择排序算法(Simple Selection Sort) 是一种简单直观的 选择排序算

    2024年02月01日
    浏览(77)
  • 【数据结构】--八大排序算法【完整版】

    本文主要讲解代码及代码思路,涵盖八大排序的全面知识点 ———————————————— 目录 一、直接插入排序 二、希尔排序(直接插入排序的改良版) 三、选择排序(直接选择排序) 四、堆排序 五、冒泡排序 六、快速排序 1、 左右指针法 2、挖坑法: 3、前后指针

    2024年02月16日
    浏览(43)
  • 【数据结构】 常见的八大排序算法

    排序有 内部排序和外部排序 ,内部排序是数据记录在内存中进行排序,这里八大排序就是内部排序,指直接插入,希尔,选择,堆排,冒泡,快排,归并,计数。 下面让我们来共同学习这八大排序吧!🤗🤗🤗 什么是外部排序: 外排序是数据量较大,内存放不下,数据放到外

    2024年02月12日
    浏览(106)
  • 第五章 数据结构与算法——八大排序

    目录 一、排序的概念及其运用 二、八大排序的原理及其实现(升序为例) (一)、直接插入排序 (二)、希尔排序(也叫缩小增量排序)(重要) 1.原理: 2.该排序一般分为两个步骤: 3.预排序过程: 4.预排序的意义(升序为例): 5.希尔排序的特点: 6.希尔排序代码实现

    2024年02月19日
    浏览(49)
  • 【数据结构初阶】八大排序算法+时空复杂度

    学会控制自己是人生的必修课 1.直接插入排序思想: 假设现在已经有一个有序序列,如果有一个数字插入到这段序列的末尾,我们会选择拿这个数和它前面的每个数字都比较一遍,如果前面的数字比他大,那我们就让前面的数字赋值到这个被插入的数字位置,依次与前面的数

    2024年02月01日
    浏览(112)
  • 【数据结构】八大排序算法(内含思维导图和画图分析)

    作者主页: paper jie_博客 本文作者:大家好,我是paper jie,感谢你阅读本文,欢迎一建三连哦。 本文录入于《JAVA数据结构》专栏,本专栏是针对于大学生,编程小白精心打造的。笔者用重金(时间和精力)打造,将javaSE基础知识一网打尽,希望可以帮到读者们哦。 其他专栏:

    2024年02月08日
    浏览(58)
  • 手把手教你 ,带你彻底掌握八大排序算法【数据结构】

    直接插入排序是一种简单的插入排序法,其基本思想:是把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 可以理解为一遍摸扑克牌,一边进行排序 在待排序的元素中,假设前面n-1(其中n=2)个数

    2024年02月02日
    浏览(60)
  • 【数据结构与算法】十大经典排序算法-希尔排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌞 知乎 :HelloCode 🌴 掘金 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 希尔排序是一种插入排序的改进版本,旨在解决插入排序在处理大规模数据时的效率问题。通过将数组分为多个子序列并对

    2024年02月12日
    浏览(75)
  • 【数据结构与算法】十大经典排序算法-插入排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌞 知乎 :HelloCode 🌴 掘金 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 插入排序(Insertion Sort)是一种简单直观的排序算法,其基本思想是将一个记录插入到已排好序的有序序列中,直到所有记录

    2024年02月13日
    浏览(80)
  • 【数据结构与算法】十大经典排序算法-冒泡排序

    🌟 个人博客: www.hellocode.top 🏰 Java知识导航: Java-Navigate 🔥 CSDN: HelloCode. 🌴 掘金 :HelloCode 🌞 知乎 :HelloCode ⚡如有问题,欢迎指正,一起学习~~ 冒泡排序(Bubble Sort)是一种简单的排序算法,它通过重复地交换相邻元素的位置来将最大(或最小)的元素逐步“冒泡”到

    2024年02月14日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包