【论文阅读】你看不见我:对基于激光雷达的自动驾驶汽车驾驶框架的物理移除攻击

这篇具有很好参考价值的文章主要介绍了【论文阅读】你看不见我:对基于激光雷达的自动驾驶汽车驾驶框架的物理移除攻击。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Abstract

自动驾驶汽车(AVs)越来越多地使用基于激光雷达的物体检测系统来感知道路上的其他车辆和行人。目前,针对基于激光雷达的自动驾驶架构的攻击主要集中在降低自动驾驶物体检测模型的置信度,以诱导障碍物误检测,而我们的研究发现了如何利用基于激光的欺骗技术,在传感器层面选择性地去除真实障碍物的激光雷达点云数据,然后将其用作自动驾驶感知的输入。这些关键的激光雷达信息的消融会导致自动驾驶障碍探测器无法识别和定位障碍物,从而导致自动驾驶汽车做出危险的自动驾驶决策。
在本文中,我们提出了一种人眼不可见的方法,通过利用激光雷达传感器数据与自动驾驶框架集成的固有自动转换和滤波过程,隐藏物体并欺骗自动驾驶汽车的障碍物探测器。我们称这种攻击为物理移除攻击(Physical Removal Attacks, PRA),我们证明了它们对三种流行的自动驾驶障碍探测器(Apollo, Autoware, PointPillars)的有效性,我们实现了45◦攻击能力。我们使用工业级模拟器LGSVL评估了攻击对三种融合模型(Frustum-ConvNet, AVOD, and Integrated-Semantic Level Fusion)的影响,以及对驾驶决策的影响。在我们的移动车辆场景中,我们实现了92.7%的成功率去除90%的目标障碍物云点。最后,我们演示了针对欺骗和对象隐藏攻击的两种流行防御的攻击成功,并讨论了两种增强的防御策略来减轻我们的攻击。

Introduction

自动驾驶汽车(av)中使用的感知系统是自动驾驶的基本要素,也是驾驶员安全可靠的自动决策的基础。这些感知系统利用激光雷达、摄像头和雷达等传感器来避障和导航控制。特别是激光雷达传感器,用于在3D点云中高精度地捕获车辆周围环境的深度测量,以检测障碍物。然而,之前的研究表明,自动驾驶(Autonomous Driving, AD)框架很容易受到利用其感知模型的激光雷达传感器的攻击,这些传感器用于障碍物检测[10,15,42,54,56,58]。

通常,这些攻击专注于创建真实世界的条件,在此条件下,攻击者可以操纵AVs感知模型来 “看到”不存在的障碍物[9,10,39,42] ,或 不检测真正的障碍物[8,15,45,59] 。例如,研究人员使用激光注入恶搞额外的激光雷达点云产生敌对的例子[10],例如,添加小扰动诱发misdetection[15]。

然而,以往的工作主要集中在降低目标检测模型的性能上,因此,在现实驾驶场景中,是否存在一种物理攻击,可以完全去除真实障碍物中的LiDAR点云,并影响自动驾驶汽车的驾驶行为,目前还没有研究。因此,本文主要解决以下研究问题: (i) 真正的障碍点云可以远程和暗地里远离激光雷达传感器感知了吗? (ii)在现实条件下,攻击者如何实施这种攻击? (iii)这些攻击对自动驾驶框架和障碍物检测模型有什么影响,以及如何防御它们?

为了回答这些问题,我们提出了一种新的攻击族,即物理移除攻击(Physical Removal attack, PRA)。利用现有的基于激光的对激光雷达传感器的欺骗攻击[10],研究了操纵激光雷达传感器数据获取的可行性,以隐藏真实的障碍物,使其不被AD框架检测到,这进一步增加了行人和其他司机的安全风险。通过在激光雷达传感器附近注入不可见的激光脉冲(即低于一定的距离阈值),可以迫使传感器从场景中的真实障碍物中丢弃合法的云点,如图1所示。该攻击利用了集成在AD框架中的激光雷达传感器的级联效应,依赖于两个主要因素:1)激光雷达传感器对强反射的固有优先级,2)激光雷达传感器外壳一定距离内的云点的自动过滤。

【论文阅读】你看不见我:对基于激光雷达的自动驾驶汽车驾驶框架的物理移除攻击,科研专区,论文阅读,自动驾驶,汽车,人工智能,安全性测试

图1:激光雷达物理移除攻击(PRA)概述。我们利用基于激光雷达的感知堆栈的内部自动过滤,从场景中物理地去除选定的3D点云。在这种情况下,行人的点云。

我们首先描述了激光雷达传感器的内部功能与激光注入产生的点移除之间的关系。然后量化不同场景下攻击者的攻击能力;为了验证该方法,通过在Velodyne VLP-16激光雷达传感器上的经验实验,检查了云点去除的有效性,实现了45◦水平攻角的能力。分析了在标准感知系统(如百度Apollo[7]、pointpillar[19]和Autoware[44])中攻击的有效性,通过对攻击者在不同场景中生成稳定的欺骗以诱导障碍物移除的能力进行建模,包括不同距离上不同类型的障碍物(如汽车和行人)。在三个相机- lidar最先进的融合模型上进一步评估了PRA。实验结果表明,在3个测试模型中,障碍物检测率下降了43% ~ 76%,并且当目标障碍物完全移除时,能够导致Autoware集成语义级融合[44]失败。

评估了户外场景中的攻击能力,实现了行人的移除,并在不同的光照条件下和与欺骗装置的不同距离(多达10米)下展示了攻击的鲁棒性。还使用AD模拟器[33]进行了端到端的评估,通过模拟理想环境下的攻击,展示了在人行横道上与行人碰撞或车辆停车的攻击后果。通过概念验证实验,展示了攻击移动车辆(如机器人和汽车)的实用性,设计并原型化了一个跟踪系统。实验结果表明,车辆以5km/h的速度行驶时,去除90%的障碍物云点的成功率为92.7%。

系统地研究了现有的针对激光欺骗攻击和目标隐藏攻击的防御方法,证明它们对移除攻击是无效的,并总结了两种防御策略,称为假阴影检测和基于方位的检测。进一步讨论和评估了基于合成的和真实的攻击轨迹的防御方法,在第一种防御中实现了82.5%的真阴性率(TNR)和91.2%的真阳性率(TPR),在第二种防御中实现了99.98%的TNR和100%的TPR。总而言之,这项工作旨在建模、测量和演示利用基于激光的欺骗技术去除激光雷达传感器信息的能力,并帮助防御当前和未来AD框架和AVs的威胁。

总之,我们强调以下贡献:文章来源地址https://www.toymoban.com/news/detail-681331.html

  • 识别并建模了一种基于激光的对激光雷达传感器的欺骗攻击,通过利用内部云点变换和滤波来删除真正的点云。
  • 在三种流行的商业和学术广告感知模型(百度Apollo[7]、pointpillar[19]和Autoware[44])上建模攻击者的能力、挑战和PRA的限制。评估了三种最新的融合模型(Frustum-ConvNet[52]、AVOD[17]和Autoware集成语义级融合[44])的攻击效果。
  • 通过在生产级AD模拟器LGSVL[33]上展示自动驾驶汽车的后果,并对移动机器人和车辆进行现实世界的攻击,验证了研究结果。
  • 验证了该攻击对两种现有的云点欺骗防御方法:CARLO[42]和隐藏攻击防御[16]的有效性。最后,提出了两种增强策略来缓解威胁。

到了这里,关于【论文阅读】你看不见我:对基于激光雷达的自动驾驶汽车驾驶框架的物理移除攻击的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自动驾驶感知——激光雷达物体检测算法

    输入 ❖ 点:X, Y, Z和反射强度R ❖ 点云:多个点的集合(无序的,非结构化的数据) 输出 ❖ 目标的类别和置信度 ❖ 目标的边框(BoundingBox) 中心点3D坐标,长宽高,旋转角度 ❖目标的其它信息 速度,加速度等 算法 ❖ 点云表示:点视图,俯视图,前视图     如下表所

    2024年02月06日
    浏览(94)
  • 自动驾驶环境感知之激光雷达物体检测算法

    前言 :视觉感知包括二维和三维视觉感知,其最终目的是为了获取三维世界坐标系下感兴趣的目标和场景的信息。单目相机下,需要几何约束或者海量数据来学习,以此来推测三维信息。双目相机下,可基于立体视觉原理来计算目标的深度信息,但在光照条件比较差或者纹理

    2024年01月23日
    浏览(55)
  • 深入浅出讲解自动驾驶 - 激光雷达原理和结构简介

    💂 个人主页 : 同学来啦 🤟 版权 : 本文由【同学来啦】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助, 欢迎关注、点赞、收藏和订阅专栏哦 激光雷达最先应用于海洋深度探测领域,其实现思路是通过相同回波之间的时间差实现海洋深度测算。后来不断演

    2024年02月16日
    浏览(44)
  • 传感器融合 | 适用于自动驾驶场景的激光雷达传感器融合项目_将激光雷达的高分辨率成像+测量物体速度的能力相结合

    项目应用场景 面向自动驾驶场景的激光雷达传感器融合,将激光雷达的高分辨率成像+测量物体速度的能力相结合,项目是一个从多个传感器获取数据并将其组合起来的过程,可以更加好地进行环境感知。项目支持 ubuntu、mac 和 windows 平台。 项目效果 项目细节 == 具体参见项目

    2024年04月24日
    浏览(51)
  • 论文阅读:MotionNet基于鸟瞰图的自动驾驶联合感知和运动预测

    MotionNet:基于鸟瞰图的自动驾驶联合感知和运动预测 论文地址: MotionNet: Joint Perception and Motion Prediction for Autonomous Driving Based on Bird’s Eye View Maps | IEEE Conference Publication | IEEE Xplore 代码地址: GitHub - pxiangwu/MotionNet: CVPR 2020, \\\"MotionNet: Joint Perception and Motion Prediction for Autonomous Dri

    2024年02月19日
    浏览(48)
  • 使用Open3D实现3D激光雷达可视化:以自动驾驶的2DKITTI深度框架为例(下篇)

    原创 | 文 BFT机器人  【原文链接】使用Open3D实现3D激光雷达可视化:以自动驾驶的2DKITTI深度框架为例(上篇) 05 Open3D可视化工具 多功能且高效的3D数据处理:Open3D是一个全面的开源库,为3D数据处理提供强大的解决方案。它具有优化的后端架构,可实现高效的并行化,非常适

    2024年02月04日
    浏览(61)
  • 使用Open3D实现3D激光雷达可视化:以自动驾驶的2DKITTI深度框架为例(上篇)

    原创 | 文 BFT机器人  3DLiDAR传感器(或)三维光探测和测距是一种先进的发光仪器,能够像我们人类一样在三维空间中感知现实世界。这项技术特别彻底改变了地球观测、环境监测、侦察和现在的自动驾驶领域,它提供准确和详细数据的能力有助于促进我们对环境和自然资源

    2024年02月03日
    浏览(56)
  • 【文献分享】基于线特征的激光雷达和相机外参自动标定

    论文题目: Line-based Automatic Extrinsic Calibration of LiDAR and Camera 中文题目: 基于线特征的激光雷达和相机外参自动标定 作者:Xinyu Zhang, Shifan Zhu, Shichun Guo, Jun Li, and Huaping Liu 作者机构:清华大学汽车安全与能源国家重点实验室 论文链接:https://www.researchgate.net/publication/354877994_

    2024年02月06日
    浏览(44)
  • 自动驾驶车辆运动规划方法综述 - 论文阅读

    本文旨在对自己的研究方向做一些记录,方便日后自己回顾。论文里面有关其他方向的讲解读者自行阅读。 参考论文:自动驾驶车辆运动规划方法综述 1 摘要 规划决策模块中的运动规划环节负责生成车辆的 局部运动轨迹 ,决定车辆行驶质量的决定因素 未来关注的重点: (

    2024年01月17日
    浏览(61)
  • 【论文阅读】自动驾驶安全的研究现状与挑战

    论文题目: Autonomous Driving Security: State of the Art and Challenges(自动驾驶安全的研究现状与挑战) 发表年份: 2022-IoTJ(IEEE Internet of Things Journal) 作者信息: Cong Gao(西安邮电大学), Geng Wang(西安邮电大学), Weisong Shi(美国韦恩州立大学), Zhongmin Wang(西安邮电大学), Yanpi

    2024年02月11日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包