5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源

这篇具有很好参考价值的文章主要介绍了5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

PRACH的时域资源是如何确定的

        PRACH的时域资源主要由参数“prach-ConfigurationIndex”决定。拿着这个参数的取值去协议38211查表6.3.3.2-2/3/4,需要注意根据实际情况在这三张表中进行选择:

  • FR1 FDD/SUL
  • FR1 TDD
  • FR2 TDD

Random access preambles can only be transmitted in the time resources given by the higher-layer parameter prach-ConfigurationIndex                                  

                                                                                                                   --摘自38211

        本博客沿用上一篇博客中的例子----2.6GHz/TDD的NR系统,使用prach-ConfigurationIndex参数就去查FR1 TDD的表(38211  6.3.3.2-3),这张表里都有什么呢?

  • preamble的format
  • SFN(nSFN mod x = y,这个公式其实暗含了PRACH的配置周期,周期为x)
  • SubFrame
  • Starting symbol
  • 1个subframe里面有多少个PRACH slot
  • 1个PRACH slot里面有多少个时域的RACH Occasion (RO)
  • PRACH duration

        这些参数里面前三个标红色的没什么异议,对于后面4个标黄色的参数是有说法的,主要体现在不同preamble(839 or 139)长度情况下理解有差异,最明显的比如“1个subframe有多少个PRACH slot”和“一个PRACH slot有多少个PO”这两个参数,看看下面两个例子,对于长preamble format 0这两项无值,而对于短preamble format C2,这两项是有值的。

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源        通过查表可以得出以上信息,但是目前时域信息只能精确到subframe。究竟在这个subframe的哪个symbol上开始还是个未知数,38211给出了如下计算公式来确定: 

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

        先计算 l 的取值,会用到上面提到的标黄色的四个参数: (带入公式时,注意长短preamble和PRACH SCS对有些参数的取值有影响)。

prach-ConfigurationIndex=2:

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

prach-ConfigurationIndex=202:

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

        计算完 l 的取值还没最终结束,真正的时间起点是t_{start}^{RA},还需要注意PRACH的SCS和PUSCH/PDSCH的SCS可能不同,这样会导致计算出来的符号长度不一致。

  •  prach-ConfigurationIndex=2 & PUSCH SCS=30KHz & PRACH SCS=1.25KHz:

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

  • prach-ConfigurationIndex=202 & PUSCH SCS=30KHz & PRACH SCS=15KHz:

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

         有了起点,再根据下表计算PRACH的长度:

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

综合以上计算,可以知道上面的两个例子对应PRACH时域起点和长度

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

至此,如何根据参数配置计算PRACH的时域资源已经解释完毕。

PRACH的频域资源是如何确定的

        PRACH的频域资源主要由两个参数“msg1-FrequencyStart”和“msg1-FDM”决定。这里面涉及两个问题,PRACH频域资源的起始位置在哪里?以及PRACH频域占多少个RB?

Random access preambles can only be transmitted in the frequency resources given by the higher-layer parameter msg1-FrequencyStart                                         

                                                                                                                              --摘自38211

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

  •  频域的起点:

        msg1-FrequencyStart会告知PRACH资源的起点距离initial BWP或当前active BWP起点的offset,此时你可以得到PRACH资源在BWP的相对位置。如果想知道绝对位置,还需要计算BWP的起点以及一个carrier实际有效使用RB的起点。上图的括号中给出了相应的RRC参数。

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

  • 频域占多少RB:

        频域一共占多少个RB取决于某一时间点上频域映射了多少个PRACH资源以及每个PRACH资源占多少个RB。频域映射了多少个PRACH资源由参数“msg1-FDM”决定;每个PRACH资源占多少RB可通过查下面这个表格得到。

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

正确的PRACH时频资源(PRACH Occasion)是如何选择的

        生成了preamble,也知道了PRACH的时频域资源,是否可以把preamble放在某个PRACH上发出去了呢?还差最关键的一步,确定PRACH与SSB的映射关系。
        5G里面凡事都会涉及到Beam这个概念,RACH流程也不例外。我们已经知道一个5G小区会发射多个SSB,也就是说有很多个下行的beam。终端会monitor和测量这些beam,挑选一个信号最好的SSB或者beam进行驻留。很明显,终端要获得比较好的上下行传输性能,需要与基站建立一个beam pair(发送beam和接收beam)。这里要强调一点,beam是分发送和接收的,并不是只有发送有beam,接收也有。另外,说到发送beam和接收beam,这里要区分上下行。

  • 上行(UE->gNB): beam pair指基站接收beam,终端发送beam
  • 下行(gNB->UE): beam pair指终端接收beam,基站发送beam

        以下面这个图(摘自KeySight的一份报告5G Boot Camp)来说说终端是如何通过初始接入完成与基站之间的beam pair建立过程的。这里面用到一个最关键的原理就是3GPP协议将不同时频域的PRACH资源或不同的preamble与SSB index进行了关联。换句话说,基站通过在不同的时域或频域或检测到的preamble index就能反过来推理出哪个SSB是对当前这个终端的最佳下行beam。

  • 1)小区广播5个SSB
  • 2)终端通过测量发现SSB 2是最好的。对于终端来讲,此时的下行beam pair已经形成(基站发送beam SSB2,终端接收beam),只是基站还不知道这个信息
  • 3)终端根据刚才最佳的SSB2接收beam方向,反过来在这个方向上发送PRACH,根据上面说的PRACH与SSB index的关联关系选择PRACH或preamble资源,这样基站收到PRACH preamble就会根据映射关系,反推出下行SSB 2是最这个终端最好的下行beam,以后的给这个终端的下行传输都在SSB2上做。
  • 4)通过上面三步,终端和基站都知道了自己的最佳发送或者接受beam是什么了

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

        下面来看看协议上或者参数上是如何控制PRACH资源与SSB的映射关系的。其中一个最为关键的参数为 ssb-perRACH-OccasionAndCB-PreamblesPerSSB。其实可以把这个参数分为两部分来看,一是ssb-perRACH-Occasion,用于表明一个RACH Occasion (RO)对应几个SSB;二是CB-PreamblesPerSSB,每个SSB上映射多少个基于竞争的preamble,注意是 基于竞争的preamble。
5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

        解释下上面这段协议描述:假设一个RO对应N个SSB并且每个SSB在每个RO内对应R个基于竞争的preamble。如果N<1,则意味着1个SSB对应1/N个连续的RO并且每个RO对应R个基于竞争的preamble,preamble index从0开始;如果N>=1,意味着一个RO里面映射了多个SSB并且每个一个RO内的SSB映射R个基于竞争的preamble,对于SSB n (0=<n<=N-1)对应的preamble index 从n*N_total_preamble/N开始。说的比较抽象,看两个例子吧。

  • 例子1:ssb-perRACH-OccasionAndCB-PreamblesPerSSB four : 13 & msg1-FDM one & ssb-PositionsInBurst mediumBitmap : '11110000'

        这是一个从现网的log摘取的配置,该小区一共发射4个SSB,1个RO对应4个SSB,每个SSB对应13个基于竞争的preamble。基站通过检测到的Preamble index的范围,就可以判断SSB的index,映射关系为{SSB0:0-12,SSB1:16-28,SSB2:32-44,SSB3:48-60},其实从这个结果还可以继续计算出用于基于非竞争的preamble index,就是64个preamble剔除基于竞争的剩下的12个preamble{13-15,29-31,45-47,61-63}

 5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

  • 例子2:ssb-perRACH-OccasionAndCB-PreamblesPerSSB 1 : 52 & msg1-FDM two & ssb-PositionsInBurst mediumBitmap : '11110000'

        改变一下上面的配置,可以看到在这个例子中一个SSB对应一个RO,每个RO或者SSB使用了全部的52个基于竞争的preamble。这样基站是无法通过preamble index来区分SSB的,只能看不同时频资源的RO来区分。4个SSB分别映射到了4个不同时频资源的RO,从RO0到RO3。

 5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源,5G NR,5G,选择PRACH时频资源

SS/PBCH block indexes provided by ssb-PositionsInBurst in SIB1 or in ServingCellConfigCommon are mapped to valid PRACH occasions in the following order where the parameters are described in [4, TS 38.211].

First, in increasing order of preamble indexes within a single PRACH occasion
Second, in increasing order of frequency resource indexes for frequency multiplexed PRACH occasions
Third, in increasing order of time resource indexes for time multiplexed PRACH occasions within a PRACH slot
Fourth, in increasing order of indexes for PRACH slots

根据上述协议描述,SSB和RO的映射遵循以下原则:文章来源地址https://www.toymoban.com/news/detail-681429.html

  • 首先,在一个RO内按照preamble index的升序映射
  • 其次,按照频域RO升序映射
  • 然后,按照一个PRACH slot内时域RO升序映射
  • 最后,按照PRACH slot升序映射

到了这里,关于5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 5G NR SRS功率控制

    3GPP TS 38.213 7.3.1节中,关于SRS的功率控制算法如下: 其中, : 表示在载波f服务小区c以及SRS的发送时隙i UE被配置的最大发射功率;  : 表示在载波f,BWP b, 服务小区c,SRS资源集qs所配置的p0值; : 表示在载波f,BWP b,服务小区c,发送时隙i配置的SRS RB数; :表示在载波f,BWP b,

    2024年02月09日
    浏览(25)
  • 5G NR:协议 - PDCCH信道

            不同于LTE中的控制信道包括PCFICH、PHICH和PDCCH,在5G NR中,控制信道仅包括PDCCH(Physical Downlink Control Channel),负责物理层各种关键控制信息的传递,PDCCH中传递的下行控制信息(Downlink Control Information)主要包括: 下行调度信息 上行调度信息 激活与去激活PUSCH调度

    2024年02月11日
    浏览(29)
  • 【5G NR】RRC连接重建解析

    前言:无线网络总有信号不稳定的时候,如果每次无线链路失败或者切换失败均要从头开始建立链接,无疑是比较耗费时间和系统资源的。重建流程只需要服务端对应到用户上下文,即可重建连接,简化了连接处理流程。 重建成功 重建失败,重新发起RRC建立 RRC重建过程的目

    2023年04月17日
    浏览(25)
  • 【5G NR】手机身份证号IMEI与IMEISV

    目录 IMEI与IMEISV简介 IMEI格式变化 IMEI的组成 IMEISV的组成   通常我们购买手机,会有两个标签,一个标签是入网许可证,贴于手机背面,另一个标签可能贴于手机背面,也可能在外包装上,这个含有条码的标签标识的是IMEI。   手机上的“IMEI”是指国际移动设备识别码(

    2024年02月09日
    浏览(37)
  • 5G NR无线蜂窝系统的信道估计器设计

    类型A:DMRS位于时隙的第二个或第三个OFDM符号,由14个OFDM符号组成,当数据占据大部分时隙时使用A型映射。 类型B:用在URLLC中,在第一个OFDM符号中传输,并进行数据调度,在时隙持续时间和数据需要立即调度的地方应用 类型A 和B决定DMRS在时域的密度,类型A最多可配置4个

    2024年02月04日
    浏览(29)
  • 通信算法之129:通信物理层-5G NR PDSCH基带处理

    Generate PDSCH modulation symbols 生成 PDSCH 调制符号 sym = nrPDSCH(cws,mod,nlayers,nid,rnti) sym = nrPDSCH(___,\\\'OutputDataType\\\',datatype) sym = nrPDSCH(cws,mod,nlayers,nid,rnti)   returns physical downlink shared channel (PDSCH) modulation symbols, as defined in TS 38.211 Sections 7.3.1.1 –3 . The process consists of scrambling with scrambling id

    2023年04月08日
    浏览(65)
  • 5G时代音视频开发前景怎么样?音视频开发需要掌握哪些技术?(1),手把手教你5G时代Webview的正确使用姿势

    你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。 我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你

    2024年04月11日
    浏览(48)
  • 5G——小区搜索流程

    小区搜索目标:读取到SIB1. 小区搜索流程概述:SIB1在PDSCH信道承载,承载SIB1的信道在哪个位置由PDCCH告诉,而PDCCH的基本信息由MIB告诉,MIB信息由广播信道PBCH广播出去,物理信道解调需要解调参考信号DMRS,DMRS信号与PCI有关联,PCI=3*SSS+PSS。 (1)SSB由(主同步信号)PSS,(辅

    2024年02月19日
    浏览(26)
  • 从手机开机流程介绍5G通信——大唐杯学习笔记二

            在学习笔记一中,我们已经介绍了“系统消息”“随机接入”两个过程,并围绕这两个过程,对5G通信展开介绍。下面,我想,我们再对之前的内容做一番更加深入的讨论,这对于我们之后的讨论是十分有益的。         概念答疑一 1.什么是信令? 所谓信令,就是在

    2024年04月27日
    浏览(24)
  • 怎样快速选择正确的可视化图表?

    数据可视化的图表类型十分丰富,好的图表可以有效、清晰地呈现数据的信息。对于用户而言,选择正确的图表是十分关键的,不仅可以达到“一图胜千言”的效果,而且会直接影响分析的结果。 用户选择正确的数据可视化图表前,需要明确数据的逻辑关系。数据的逻辑关系

    2024年02月08日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包