博流RISC-V芯片BL616开发环境搭建

这篇具有很好参考价值的文章主要介绍了博流RISC-V芯片BL616开发环境搭建。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


本文分别介绍博流RISC-V芯片 BL616 在 Windows和Linux 下开发环境搭建,本文同时适用BL618,BL602,BL702,BL808系列芯片。

1、工具安装

  1. Windows
    我们在日常工作中会经常使用到 git,windows 环境下载 git 安装包安装后即可使用。下载地址:https://git-scm.com/download/win。

当前 64bit 操作系统下最新版本为 Git-2.41.0.3-64-bit.exe,下载完全后按照正常安装方法安装。

安装完成后,桌面上会显示一个 Git Bash 的软件,双击即可打开 git 命令行。

  1. Linux
    Linux 下可直接使用命令行安装
$ sudo apt-get update
$ sudo apt-get upgrade -y
$ sudo apt-get install -y git
  1. 安装完成后,在命令行中测试是否安装成功
$ git --version
git version 2.25.1

2、代码下载

在 git 命令行中输入:

$ git clone https://github.com/bouffalolab/bouffalo_sdk

仓库有点大,下载需要一些时间。

3、环境变量配置

  • Ninja

Ninja 是一个快速、轻量级的构建系统工具。它使用简单的配置文件来描述构建过程,并且能够高效地执行并行构建。Ninja 的设计目标是提供一种快速的构建工具,尤其适用于大型项目和复杂的构建过程。Ninja 通常与其他构建工具(如 CMake)配合使用。

Ninja 相对于其他构建工具具有以下几个显著的优势:

  • 速度快:Ninja 使用简单的依赖图来确定需要重新构建的目标,因此可以避免不必要的重新构建,提高整体编译速度。

  • 轻量级:Ninja 本身只是一个小型可执行文件,占用资源较少,不会拖慢编译过程。

  • 可扩展:Ninja 支持自定义构建规则和脚本,可以根据项目的需求进行灵活的扩展和定制。

  • CMake

CMake 是一个跨平台的构建工具,用于生成各种不同构建系统(如 Makefile、Ninja 等)所需的构建文件。CMake 通过提供一个简单的跨平台配置语言,使得开发者可以轻松地定义项目的构建规则。CMake 可以自动生成适用于不同操作系统和编译器的构建文件,简化了跨平台项目的构建过程。

CMake用于定义项目的构建规则和依赖关系,并生成相应的构建文件(如 Makefile 或 Ninja文件)。然后,使用 Ninja 等构建工具来实际执行构建过程,编译源代码、链接库文件等。CMake 和 Ninja 的配合使用可以提供灵活、高效的项目构建解决方案,并且支持跨平台开发。

bouffalo_sdk 编译需要 make、cmake、ninja 等编译工具。

  1. Windows
    windows 默认不支持 make 类编译工具,bouffalo_sdk/tools目录下已经带了这些工具的 Windows 版本,Windows 下需要配置对应的路径至系统环境配置,即可正常使用。
  • make:bouffalo_sdk\tools\make
  • cmake:bouffalo_sdk\tools\cmake\bin
  • ninja:bouffalo_sdk\tools\ninja

博流RISC-V芯片BL616开发环境搭建,RISC-V,BL618,BL616,BL808

  1. Linux
    Linux 下可直接使用命令行安装
$ sudo apt-get install -y build-essential cmake ninja-build

安装完成后即可使用。

  1. 安装、配置完成后,在命令行中测试是否安装成功
$ make -v
GNU Make 4.2.1
Built for x86_64-w64-mingw32
Copyright (C) 1988-2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

$ cmake --version
cmake version 3.25.1

CMake suite maintained and supported by Kitware (kitware.com/cmake).

$ ninja --version
1.11.1

4、下载交叉编译器

  1. windows
    https://occ-oss-prod.oss-cn-hangzhou.aliyuncs.com/resource//1663141789688/Xuantie-900-gcc-elf-newlib-mingw-V2.6.1-20220906.tar.gz
  • 下载解压
    由于 Windows 默认不支持直接解压 .tar.gz 后缀的文件,可以使用上诉下载的 git 命令行工具用命令解压。在 Xuantie-900-gcc-elf-newlib-mingw-V2.6.1-20220906.tar.gz 所在的文件夹下点击右键,选择 Git Bash Here,在弹出的命令行中输入
$ tar zxvf Xuantie-900-gcc-elf-newlib-mingw-V2.6.1-20220906.tar.gz
  • 系统环境变量配置
    博流RISC-V芯片BL616开发环境搭建,RISC-V,BL618,BL616,BL808
  1. Linux
    https://occ-oss-prod.oss-cn-hangzhou.aliyuncs.com/resource//1663142243961/Xuantie-900-gcc-elf-newlib-x86_64-V2.6.1-20220906.tar.gz

下载后解压至 /opt 目录下

$ sudo tar zxvf Xuantie-900-gcc-elf-newlib-x86_64-V2.6.1-20220906.tar.gz -C /opt

然后将交叉编译器路径添加至编译变量中,使用 zsh 的可以编辑 ~/.zshrc 文件;使用 bash 的可以编辑 ~/.bash 文件。

$ vim ~/.zshrc
# 在空白处加入一行
export PATH=$PATH:/opt/Xuantie-900-gcc-elf-newlib-x86_64-V2.6.1/bin

保存后,使用 source 命令让配置生效。

$ source ~/.zshrc

注: source 命令只能在当前终端下使环境变量生效,新开的终端需要再次使用 source 命令,或者重新系统。

  1. 配置完成后,在命令行中测试是否安装成功
$ riscv64-unknown-elf-gcc -v
Using built-in specs.
COLLECT_GCC=riscv64-unknown-elf-gcc
COLLECT_LTO_WRAPPER=d:/bl618/toolchain_gcc_t-head_windows/bin/../libexec/gcc/riscv64-unknown-elf/10.2.0/lto-wrapper.exe
Target: riscv64-unknown-elf
Configured with: /mnt/ssd/jenkins_iotsw/slave/workspace/Toolchain/build-gnu-riscv/./source/riscv/riscv-gcc/configure --target=riscv64-unknown-elf --host=i686-w64-mingw32 --with-gmp=/mnt/ssd/jenkins_iotsw/slave/workspace/Toolchain/build-gnu-riscv/build-gcc-riscv64-unknown-elf/build-Xuantie-900-gcc-elf-newlib-mingw-V2.6.1/lib-for-gcc-mingw --with-mpfr=/mnt/ssd/jenkins_iotsw/slave/workspace/Toolchain/build-gnu-riscv/build-gcc-riscv64-unknown-elf/build-Xuantie-900-gcc-elf-newlib-mingw-V2.6.1/lib-for-gcc-mingw --with-mpc=/mnt/ssd/jenkins_iotsw/slave/workspace/Toolchain/build-gnu-riscv/build-gcc-riscv64-unknown-elf/build-Xuantie-900-gcc-elf-newlib-mingw-V2.6.1/lib-for-gcc-mingw --with-libexpat-prefix=/mnt/ssd/jenkins_iotsw/slave/workspace/Toolchain/build-gnu-riscv/build-gcc-riscv64-unknown-elf/build-Xuantie-900-gcc-elf-newlib-mingw-V2.6.1/lib-for-gcc-mingw --with-libmpfr-prefix=/mnt/ssd/jenkins_iotsw/slave/workspace/Toolchain/build-gnu-riscv/build-gcc-riscv64-unknown-elf/build-Xuantie-900-gcc-elf-newlib-mingw-V2.6.1/lib-for-gcc-mingw --with-pkgversion='Xuantie-900 elf newlib gcc Toolchain V2.6.1 B-20220906' CXXFLAGS='-g -O2 -DTHEAD_VERSION_NUMBER=2.6.1 ' --enable-libgcctf --prefix=/mnt/ssd/jenkins_iotsw/slave/workspace/Toolchain/build-gnu-riscv/build-gcc-riscv64-unknown-elf/Xuantie-900-gcc-elf-newlib-mingw-V2.6.1 --disable-shared --enable-threads=posix --enable-languages=c,c++ --without-system-zlib --enable-tls --with-newlib --with-sysroot=/mnt/ssd/jenkins_iotsw/slave/workspace/Toolchain/build-gnu-riscv/build-gcc-riscv64-unknown-elf/Xuantie-900-gcc-elf-newlib-mingw-V2.6.1/riscv64-unknown-elf --with-native-system-header-dir=/include --disable-libmudflap --disable-libssp --disable-libquadmath --disable-libgomp --disable-nls --disable-tm-clone-registry --src=/mnt/ssd/jenkins_iotsw/slave/workspace/Toolchain/build-gnu-riscv/./source/riscv/riscv-gcc --enable-multilib --with-abi=lp64d --with-arch=rv64gcxthead 'CFLAGS_FOR_TARGET=-Os   -mcmodel=medany' 'CXXFLAGS_FOR_TARGET=-Os   -mcmodel=medany'
Thread model: posix
Supported LTO compression algorithms: zlib zstd
gcc version 10.2.0 (Xuantie-900 elf newlib gcc Toolchain V2.6.1 B-20220906)

5、编译与下载运行

  1. 编译

通过 VSCode 打开已经下载完成的 bouffalo_sdk,并进入我们第一个运行的 example 程序 helloworld,并运行 make 命令开始编译。

$ cd example\helloworld 
$ make CHIP=bl616 BOARD=bl616dk

其中:

CHIP:表示当前编译的芯片为bl616。

BOARD:表示当前编译的目标板为bl616dk,可以在根目录 bsp 下获取对应的板子列表。

  1. 烧录

按住 boot 按钮,重新上电后,芯片即进入 boot 状态,可通过串口烧录程序。

  • 命令烧录:
    在命令行中输入以下命令,即可
$ make flash CHIP=bl616 COMX=COM20

其中:

CHIP:表示当前编译的芯片为 bl616。

COMX:为当前烧录串口,bl616/bl618 在 boot 模式下,USB 自带 usb-ttl 功能,可用于下载。在 windows 系统下为COM20(根据自己电脑上的串口号填写),Linux 系统下为 /dev/ttyxxx。

  • GUI工具烧录

打开 bouffalo_sdk\tools\bflb_tools\bouffalo_flash_cube 目录,运行 BLFlashCube.exe 启动 GUI 烧录工具。

  • 点击 Port,选择正确的串口
  • 点击 Browse,选择当前需要烧录的项目下的 ini文件

博流RISC-V芯片BL616开发环境搭建,RISC-V,BL618,BL616,BL808

  1. 运行

烧录完成后,重新上电,即可运行。

 ____               __  __      _       _       _     
 |  _ \             / _|/ _|    | |     | |     | |    
 | |_) | ___  _   _| |_| |_ __ _| | ___ | | __ _| |__  
 |  _ < / _ \| | | |  _|  _/ _` | |/ _ \| |/ _` | '_ \ 
 | |_) | (_) | |_| | | | || (_| | | (_) | | (_| | |_) |
 |____/ \___/ \__,_|_| |_| \__,_|_|\___/|_|\__,_|_.__/ 

Build:22:36:13,Aug 20 2023
Copyright (c) 2022 Bouffalolab team
======== flash cfg ========
flash size 0x00800000
jedec id     0xC84017
mid              0xC8
iomode           0x04
clk delay        0x01
clk invert       0x01
read reg cmd0    0x05
read reg cmd1    0x35
write reg cmd0   0x01
write reg cmd1   0x31
qe write len     0x01
cread support    0x01
cread code       0x20
burst wrap cmd   0x77
===========================
dynamic memory init success, ocram heap size = 409 Kbyte 
sig1:ffffffff
sig2:0000f32f
cgen1:9f7ffffd
[F][MAIN] hello world fatal
[E][MAIN] hello world error
[W][MAIN] hello world warning
[I][MAIN] hello world information
hello world fatal raw
hello world error raw
hello world warning raw
hello world information raw

如需要编译其他功能 example,可切换到对应目录后按照以上步骤执行。

6、使用ninja编译

在 bouffalo_sdk 中默认使用 make 编译,也可以使用 ninja 加快编译速度,只需要替换编译命令即可

$ make ninja CHIP=bl616 BOARD=bl616dk

注:如之前使用 make 已编译过项目,更换为 ninja 编译会报错,需要先执行 make clean 命令。

  • make 和 ninja 编译速度对比

对 examples/wifi/sta/wifi_udp 项目进行全新编译文章来源地址https://www.toymoban.com/news/detail-681582.html

系统 make ninja
Linux 62秒 47秒
Windows 120秒 100秒

到了这里,关于博流RISC-V芯片BL616开发环境搭建的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MIT 6.S081 Operating System/Fall 2020 macOS搭建risc-v与xv6开发调试环境

    电脑型号:Apple M2 Pro 2023 操作系统:macOS Ventura 13.4 所以我的电脑是arm64架构的M2芯片 执行安装脚本 /bin/zsh -c \\\"$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)\\\" 镜像选哪个都无所谓,我选择的是阿里巴巴 查看安装是否成功 brew --version 执行brew的安装脚本 这步需要先安装

    2024年02月08日
    浏览(41)
  • 【基于FPGA的芯片设计】32位RISC-V存储器

    实验板卡 :xc7a100tlc sg324-2L,共20个开关 实验要求    

    2024年02月15日
    浏览(28)
  • 【基于FPGA的芯片设计】RISC-V的20条指令CPU设计

    实验板卡 :xc7a100tlc sg324-2L,共20个开关 实验要求:          

    2024年02月16日
    浏览(33)
  • 主流的芯片架构x86,Arm,MIPS,Power,RISC-V

    x86架构: 特点:x86架构是一种 复杂指令集计算机(CISC)架构 ,具有广泛的软件和生态系统支持。它在个人计算机和服务器领域占据主导地位,提供高性能和广泛的兼容性。X86和ARM架构最本质的区别在于复杂指令集和精简指令集。主要面向家用、商用领域,在 性能和兼容性

    2024年02月07日
    浏览(38)
  • 飞凌嵌入式受邀参加「RISC-V芯片应用交流会」并发表主题演讲

    8月23日下午,在第三届RISC-V中国峰会现场,由赛昉科技主办的「RISC-V芯片应用交流会」吸引了诸多行业伙伴和专家到场参与。此次会议旨在分享赛昉科技高性能RISC-V芯片的软件生态、应用产品、解决方案等全面进展,共同探讨RISC-V芯片的未来发展和挑战,破局RISC-V落地难点。

    2024年02月11日
    浏览(33)
  • 从零学习开发一个RISC-V操作系统(四)丨RISC-V汇编语言编程

       本系列是博主参考B站课程学习开发一个RISC-V的操作系统的学习笔记,计划从RISC-V的底层汇编指令学起,结合C语言,在Ubuntu 20.04上开发一个简易的操作系统。一个目的是通过实践操作学习和了解什么是操作系统,第二个目的是为之后学习RISC-V的集成电路设计打下一定基础

    2024年01月25日
    浏览(31)
  • 浅谈 RISC-V 软件开发生态之 IDE

    软件开发者是芯片公司非常重要的资产,CPU做出来是不够的,要让更多的软件开发者用这颗芯片才是成功。国际大厂们都有一只较大的软件团队,在做面向开发者的软件工具和SDK等。--张先轶博士:为什么RISC-V需要共建软件生态? 目前RISC-V架构在全球发展迅猛,RISC-V花了差不多

    2024年02月10日
    浏览(33)
  • RISC-V公测平台发布 · 在SG2042上配置Jupiter+Octave科学计算环境

    简介 JupyterHub是一个开源的共享计算平台,它为每个用户管理一个单独的 Jupyter 环境, 可以用于学生班级、企业数据科学小组或科学研究小组。它是一个多用户中心,可以生成、管理和代理多个单用户Jupyter笔记本服务器的实例。 GNU Octave是一种采用高级编程语言的主要用于数

    2024年02月10日
    浏览(26)
  • 从头开发一个RISC-V的操作系统(三)编译与链接

    目标:通过这一个系列课程的学习,开发出一个简易的在RISC-V指令集架构上运行的操作系统。 这个系列的大部分文章和知识来自于:[完结] 循序渐进,学习开发一个RISC-V上的操作系统 - 汪辰 - 2021春,以及相关的github地址。 在这个过程中,这个系列相当于是我的学习笔记,做

    2024年04月09日
    浏览(40)
  • 从头开发一个RISC-V的操作系统(一)计算机系统漫游

    目标:通过这一个系列课程的学习,开发出一个简易的在RISC-V指令集架构上运行的操作系统。 这个系列的大部分文章和知识来自于:[完结] 循序渐进,学习开发一个RISC-V上的操作系统 - 汪辰 - 2021春,以及相关的github地址。 在这个过程中,这个系列相当于是我的学习笔记,做

    2024年04月09日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包