第61步 深度学习图像识别:多分类建模(TensorFlow)

这篇具有很好参考价值的文章主要介绍了第61步 深度学习图像识别:多分类建模(TensorFlow)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基于WIN10的64位系统演示

一、写在前面

截至上期,我们一直都在做二分类的任务,无论是之前的机器学习任务,还是最近更新的图像分类任务。然而,在实际工作中,我们大概率需要进行多分类任务。例如肺部胸片可不仅仅能诊断肺结核,还有COVID-19、细菌性(病毒性)肺炎等等,这就涉及到图像识别的多分类任务。

本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,构建Mobilenet多分类模型,原因还是因为它建模速度快。

同样,基于GPT-4辅助编程,改写过程见后面。

二、误判病例分析实战

使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,健康人900张,肺结核病人700张,COVID-19病人549张、细菌性(病毒性)肺炎组900张,分别存入单独的文件夹中。

(a)直接分享代码

######################################导入包###################################
from tensorflow import keras
import tensorflow as tf
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout, Activation, Reshape, Softmax, GlobalAveragePooling2D, BatchNormalization
from tensorflow.python.keras.layers.convolutional import Convolution2D, MaxPooling2D
from tensorflow.python.keras import Sequential
from tensorflow.python.keras import Model
from tensorflow.python.keras.optimizers import adam_v2
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator, image_dataset_from_directory
from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomFlip, RandomRotation, RandomContrast, RandomZoom, RandomTranslation
import os,PIL,pathlib
import warnings
#设置GPU
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
warnings.filterwarnings("ignore")             #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号


################################导入数据集#####################################
#1.导入数据
#1.导入数据
data_dir = "./MTB-1" # 修改了路径
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

batch_size = 32
img_height = 100
img_width  = 100

train_ds = image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

val_ds = image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)
print(train_ds)


#2.检查数据
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

#3.配置数据
AUTOTUNE = tf.data.AUTOTUNE

def train_preprocessing(image,label):
    return (image/255.0,label)

train_ds = (
    train_ds.cache()
    .shuffle(800)
    .map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)           # 在image_dataset_from_directory处已经设置了batch_size
    .prefetch(buffer_size=AUTOTUNE)
)

val_ds = (
    val_ds.cache()
    .map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)         # 在image_dataset_from_directory处已经设置了batch_size
    .prefetch(buffer_size=AUTOTUNE)
)

#4. 数据可视化
plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")

class_names = ["COVID-19", "Normal", "Pneumonia", "Tuberculosis"] # 修改类别标签

for images, labels in train_ds.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)

        # 显示图片
        plt.imshow(images[i])
        # 显示标签
        plt.xlabel(class_names[labels[i]-1])

plt.show()

######################################数据增强函数################################

data_augmentation = Sequential([
  RandomFlip("horizontal_and_vertical"),
  RandomRotation(0.2),
  RandomContrast(1.0),
  RandomZoom(0.5,0.2),
  RandomTranslation(0.3,0.5),
])

def prepare(ds):
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
    return ds
train_ds = prepare(train_ds)


###############################导入mobilenet_v2################################
#获取预训练模型对输入的预处理方法
from tensorflow.python.keras.applications import mobilenet_v2
from tensorflow.python.keras import Input, regularizers
IMG_SIZE = (img_height, img_width, 3)

base_model = mobilenet_v2.MobileNetV2(input_shape=IMG_SIZE, 
                                      include_top=False, #是否包含顶层的全连接层
                                      weights='imagenet')

inputs = Input(shape=IMG_SIZE)
#模型
x = base_model(inputs, training=False) #参数不变化
#全局池化
x = GlobalAveragePooling2D()(x)
#BatchNormalization
x = BatchNormalization()(x)
#Dropout
x = Dropout(0.8)(x)
#Dense
x = Dense(128, kernel_regularizer=regularizers.l2(0.1))(x)  # 全连接层减少到128,添加 L2 正则化
#BatchNormalization
x = BatchNormalization()(x)
#激活函数
x = Activation('relu')(x)
#输出层
outputs = Dense(4, kernel_regularizer=regularizers.l2(0.1))(x)  # 输出层神经元数量修改为4
#BatchNormalization
outputs = BatchNormalization()(outputs)
#激活函数
outputs = Activation('softmax')(outputs) # 激活函数修改为'softmax'
#整体封装
model = Model(inputs, outputs)
#打印模型结构
print(model.summary())
#############################编译模型#########################################
#定义优化器
from tensorflow.python.keras.optimizers import adam_v2, rmsprop_v2
#from tensorflow.python.keras.optimizer_v2.gradient_descent import SGD
optimizer = adam_v2.Adam()
#optimizer = SGD(learning_rate=0.001)
#optimizer = rmsprop_v2.RMSprop()

#常用的优化器
#all_classes = {
#      'adadelta': adadelta_v2.Adadelta,
#     'adagrad': adagrad_v2.Adagrad,
#     'adam': adam_v2.Adam,
#      'adamax': adamax_v2.Adamax,
#      'experimentaladadelta': adadelta_experimental.Adadelta,
#      'experimentaladagrad': adagrad_experimental.Adagrad,
#      'experimentaladam': adam_experimental.Adam,
#      'experimentalsgd': sgd_experimental.SGD,
#      'nadam': nadam_v2.Nadam,
#      'rmsprop': rmsprop_v2.RMSprop,

#编译模型
model.compile(optimizer=optimizer,
                loss='sparse_categorical_crossentropy', # 多分类问题
                metrics=['accuracy'])

#训练模型
from tensorflow.python.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler

NO_EPOCHS = 50
PATIENCE  = 10
VERBOSE   = 1

# 设置动态学习率
annealer = LearningRateScheduler(lambda x: 1e-5 * 0.99 ** (x+NO_EPOCHS))

# 设置早停
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)

# 
checkpointer = ModelCheckpoint('mtb_4_jet_best_model_mobilenetv3samll.h5',
                                monitor='val_accuracy',
                                verbose=VERBOSE,
                                save_best_only=True,
                                save_weights_only=True)

train_model  = model.fit(train_ds,
                  epochs=NO_EPOCHS,
                  verbose=1,
                  validation_data=val_ds,
                  callbacks=[earlystopper, checkpointer, annealer])

#保存模型
model.save('mtb_4_jet_best_model_mobilenet.h5')
print("The trained model has been saved.")

from tensorflow.python.keras.models import load_model
train_model=load_model('mtb_4_jet_best_model_mobilenet.h5')
###########################Accuracy和Loss可视化#################################
import matplotlib.pyplot as plt

loss = train_model.history['loss']
acc = train_model.history['accuracy']
val_loss = train_model.history['val_loss']
val_acc = train_model.history['val_accuracy']
epoch = range(1, len(loss)+1)

fig, ax = plt.subplots(1, 2, figsize=(10,4))
ax[0].plot(epoch, loss, label='Train loss')
ax[0].plot(epoch, val_loss, label='Validation loss')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Loss')
ax[0].legend()
ax[1].plot(epoch, acc, label='Train acc')
ax[1].plot(epoch, val_acc, label='Validation acc')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Accuracy')
ax[1].legend()
#plt.show()
plt.savefig("loss-acc.pdf", dpi=300,format="pdf")

####################################混淆矩阵可视化#############################
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.models import load_model
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math
from sklearn.metrics import precision_recall_fscore_support, accuracy_score

# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions, class_names):
    # 生成混淆矩阵
    conf_numpy = confusion_matrix(labels, predictions)
    # 将矩阵转化为 DataFrame
    conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  
    
    plt.figure(figsize=(8,7))
    
    sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
    
    plt.title('Confusion matrix',fontsize=15)
    plt.ylabel('Actual value',fontsize=14)
    plt.xlabel('Predictive value',fontsize=14)

val_pre   = []
val_label = []
for images, labels in val_ds:
    for image, label in zip(images, labels):
        img_array = tf.expand_dims(image, 0)
        prediction = model.predict(img_array)
        val_pre.append(np.argmax(prediction, axis=-1))
        val_label.append(label.numpy())  # 需要将标签转换为 numpy 数组

class_names = ['COVID-19', 'Normal', 'Pneumonia', 'Tuberculosis']  # 修改为你的类别名称
plot_cm(val_label, val_pre, class_names)
plt.savefig("val-cm.pdf", dpi=300,format="pdf")

precision_val, recall_val, f1_val, _ = precision_recall_fscore_support(val_label, val_pre, average='micro')
acc_val = accuracy_score(val_label, val_pre)
error_rate_val = 1 - acc_val

print("验证集的灵敏度(召回率)为:",recall_val, 
      "验证集的特异度为:",precision_val,  # 在多分类问题中,特异度定义不明确,这里我们使用精确度来代替
      "验证集的准确率为:",acc_val, 
      "验证集的错误率为:",error_rate_val,
      "验证集的F1为:",f1_val)

train_pre   = []
train_label = []
for images, labels in train_ds:
    for image, label in zip(images, labels):
        img_array = tf.expand_dims(image, 0)
        prediction = model.predict(img_array)
        train_pre.append(np.argmax(prediction, axis=-1))
        train_label.append(label.numpy())

plot_cm(train_label, train_pre, class_names)
plt.savefig("train-cm.pdf", dpi=300,format="pdf")

precision_train, recall_train, f1_train, _ = precision_recall_fscore_support(train_label, train_pre, average='micro')
acc_train = accuracy_score(train_label, train_pre)
error_rate_train = 1 - acc_train

print("训练集的灵敏度(召回率)为:",recall_train, 
      "训练集的特异度为:",precision_train,  # 在多分类问题中,特异度定义不明确,这里我们使用精确度来代替
      "训练集的准确率为:",acc_train, 
      "训练集的错误率为:",error_rate_train,
      "训练集的F1为:",f1_train)


################################模型性能参数计算################################
from sklearn import metrics

def test_accuracy_report(model):
    print(metrics.classification_report(val_label, val_pre, target_names=class_names)) 
    score = model.evaluate(val_ds, verbose=0)
    print('Loss function: %s, accuracy:' % score[0], score[1])
    
test_accuracy_report(model)

def train_accuracy_report(model):
    print(metrics.classification_report(train_label, train_pre, target_names=class_names)) 
    score = model.evaluate(train_ds, verbose=0)
    print('Loss function: %s, accuracy:' % score[0], score[1])
    
train_accuracy_report(model)

################################AUC曲线绘制####################################
from sklearn import metrics
from sklearn.preprocessing import LabelBinarizer
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.models import load_model
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math

def plot_roc(name, labels, predictions, **kwargs):
    fp, tp, _ = metrics.roc_curve(labels, predictions)

    plt.plot(fp, tp, label=name, linewidth=2, **kwargs)
    plt.xlabel('False positives rate')
    plt.ylabel('True positives rate')
    ax = plt.gca()
    ax.set_aspect('equal')

# 需要将标签进行one-hot编码
lb = LabelBinarizer()
lb.fit([0, 1, 2, 3])  # 训练标签编码器,这里设定有四个类别
n_classes = 4  # 类别数量

val_pre_auc   = []
val_label_auc = []

for images, labels in val_ds:
    for image, label in zip(images, labels):      
        img_array = tf.expand_dims(image, 0) 
        prediction_auc = model.predict(img_array)
        val_pre_auc.append(prediction_auc[0])
        val_label_auc.append(lb.transform([label])[0])  # 这里需要使用标签编码器进行编码

val_pre_auc = np.array(val_pre_auc)
val_label_auc = np.array(val_label_auc)

auc_score_val = [metrics.roc_auc_score(val_label_auc[:, i], val_pre_auc[:, i]) for i in range(n_classes)]


train_pre_auc   = []
train_label_auc = []

for images, labels in train_ds:
    for image, label in zip(images, labels):
        img_array_train = tf.expand_dims(image, 0) 
        prediction_auc = model.predict(img_array_train)
        train_pre_auc.append(prediction_auc[0])
        train_label_auc.append(lb.transform([label])[0])

train_pre_auc = np.array(train_pre_auc)
train_label_auc = np.array(train_label_auc)

auc_score_train = [metrics.roc_auc_score(train_label_auc[:, i], train_pre_auc[:, i]) for i in range(n_classes)]

for i in range(n_classes):
    plot_roc('validation AUC for class {0}: {1:.4f}'.format(i, auc_score_val[i]), val_label_auc[:, i] , val_pre_auc[:, i], color="red", linestyle='--')
    plot_roc('training AUC for class {0}: {1:.4f}'.format(i, auc_score_train[i]), train_label_auc[:, i], train_pre_auc[:, i], color="blue", linestyle='--')

plt.legend(loc='lower right')
plt.savefig("roc.pdf", dpi=300,format="pdf")

for i in range(n_classes):
    print("Class {0} 训练集的AUC值为:".format(i), auc_score_train[i], "验证集的AUC值为:", auc_score_val[i])


################################AUC曲线绘制-分开展示####################################
from sklearn import metrics
from sklearn.preprocessing import LabelBinarizer
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.models import load_model
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import math

def plot_roc(ax, name, labels, predictions, **kwargs):
    fp, tp, _ = metrics.roc_curve(labels, predictions)
    ax.plot(fp, tp, label=name, linewidth=2, **kwargs)
    ax.plot([0, 1], [0, 1], color='orange', linestyle='--')
    ax.set_xlabel('False positives rate')
    ax.set_ylabel('True positives rate')
    ax.set_aspect('equal')

# 需要将标签进行one-hot编码
lb = LabelBinarizer()
lb.fit([0, 1, 2, 3])  # 训练标签编码器,这里设定有四个类别
n_classes = 4  # 类别数量

val_pre_auc   = []
val_label_auc = []

for images, labels in val_ds:
    for image, label in zip(images, labels):      
        img_array = tf.expand_dims(image, 0) 
        prediction_auc = model.predict(img_array)
        val_pre_auc.append(prediction_auc[0])
        val_label_auc.append(lb.transform([label])[0])  # 这里需要使用标签编码器进行编码

val_pre_auc = np.array(val_pre_auc)
val_label_auc = np.array(val_label_auc)

auc_score_val = [metrics.roc_auc_score(val_label_auc[:, i], val_pre_auc[:, i]) for i in range(n_classes)]


train_pre_auc   = []
train_label_auc = []

for images, labels in train_ds:
    for image, label in zip(images, labels):
        img_array_train = tf.expand_dims(image, 0) 
        prediction_auc = model.predict(img_array_train)
        train_pre_auc.append(prediction_auc[0])
        train_label_auc.append(lb.transform([label])[0])

train_pre_auc = np.array(train_pre_auc)
train_label_auc = np.array(train_label_auc)

auc_score_train = [metrics.roc_auc_score(train_label_auc[:, i], train_pre_auc[:, i]) for i in range(n_classes)]

fig, axs = plt.subplots(n_classes, figsize=(5, 20))

for i in range(n_classes):
    plot_roc(axs[i], 'validation AUC for class {0}: {1:.4f}'.format(i, auc_score_val[i]), val_label_auc[:, i] , val_pre_auc[:, i], color="red", linestyle='--')
    plot_roc(axs[i], 'training AUC for class {0}: {1:.4f}'.format(i, auc_score_train[i]), train_label_auc[:, i], train_pre_auc[:, i], color="blue", linestyle='--')
    axs[i].legend(loc='lower right')

plt.tight_layout()
plt.savefig("roc.pdf", dpi=300,format="pdf")

for i in range(n_classes):
    print("Class {0} 训练集的AUC值为:".format(i), auc_score_train[i], "验证集的AUC值为:", auc_score_val[i])

(b)调教GPT-4的过程

(b1)咒语:请根据{代码1},改写和续写《代码2》。代码1:{也就是之前用tensorflow写的误判病例分析部分};代码2:《也就是修改之前的Mobilenet模型建模代码》

然后根据具体情况调整即可,当然是在GPT的帮助下。

三、输出结果

(1)学习曲线

第61步 深度学习图像识别:多分类建模(TensorFlow),《100 Steps to Get ML》—JET学习笔记,深度学习,分类,tensorflow

(2)混淆矩阵

第61步 深度学习图像识别:多分类建模(TensorFlow),《100 Steps to Get ML》—JET学习笔记,深度学习,分类,tensorflow

(3)性能参数

第61步 深度学习图像识别:多分类建模(TensorFlow),《100 Steps to Get ML》—JET学习笔记,深度学习,分类,tensorflow

(4)ROC曲线

(4.1)和在一起的:

第61步 深度学习图像识别:多分类建模(TensorFlow),《100 Steps to Get ML》—JET学习笔记,深度学习,分类,tensorflow

 (4.2)分开的:

第61步 深度学习图像识别:多分类建模(TensorFlow),《100 Steps to Get ML》—JET学习笔记,深度学习,分类,tensorflow

 第61步 深度学习图像识别:多分类建模(TensorFlow),《100 Steps to Get ML》—JET学习笔记,深度学习,分类,tensorflow

四、数据

链接:https://pan.baidu.com/s/1rqu15KAUxjNBaWYfEmPwgQ?pwd=xfyn

提取码:xfyn 文章来源地址https://www.toymoban.com/news/detail-681796.html

到了这里,关于第61步 深度学习图像识别:多分类建模(TensorFlow)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第64步 深度学习图像识别:多分类建模误判病例分析(Pytorch)

    一、写在前面 上期我们基于TensorFlow环境介绍了多分类建模的误判病例分析。 本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于Pytorch环境,构建SqueezeNet多分类模型,分析误判病例,因为它建模速度快。 同样,基于GPT-4辅助编程。 二、误判病例分

    2024年02月10日
    浏览(41)
  • 基于tensorflow深度学习的猫狗分类识别

      🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 实验背景 实验目的 实验环境 实验过程 1.加载数据 2.数据预处理 3.构建模型 4.训练模

    2024年02月10日
    浏览(45)
  • 深度学习篇之tensorflow(2) ---图像识别

    研究图像识别离不开两样东西:第一,大量的样本数据;第二,好的算法。从某种意义上来说,数据比算法更重要,算法只是决定了图像识别的准确率,但如果没有样本数据,图像识别就无从谈起了。 图像识别的关键:特征 和特征之间的相对位置。 首先是特征,我们记住一

    2024年02月08日
    浏览(30)
  • 大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统

    随着社会的发展和城市化进程的加速,垃圾分类已经成为了环境保护和可持续发展的重要课题。然而,传统的垃圾分类方法通常依赖于人工识别,效率低下且易出错。因此,本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional

    2024年04月14日
    浏览(100)
  • 第59步 深度学习图像识别:误判病例分析(TensorFlow)

    一、写在前面 本期内容对等于机器学习二分类系列的误判病例分析(传送门)。既然前面的数据可以这么分析,那么图形识别自然也可以。 本期以mobilenet_v2模型为例,因为它建模速度快。 同样,基于GPT-4辅助编程,后续会分享改写过程。 二、误判病例分析实战 继续使用胸片

    2024年02月11日
    浏览(31)
  • 第56步 深度学习图像识别:CNN梯度权重类激活映射(TensorFlow)

    一、写在前面 类激活映射(Class Activation Mapping,CAM)和梯度权重类激活映射(Gradient-weighted Class Activation Mapping,Grad-CAM) 是两种可视化深度学习模型决策过程的技术。他们都是为了理解模型的决策过程,特别是对于图像分类任务,它们可以生成一种热力图,这种图可以突出显

    2024年02月13日
    浏览(49)
  • 基于Python+WaveNet+CTC+Tensorflow智能语音识别与方言分类—深度学习算法应用(含全部工程源码)

    本项目利用语音文件和方言标注文件,提取语音的梅尔倒谱系数特征,并对这些特征进行归一化处理。在基于标注文件的指导下,构建了一个字典来管理数据。接着,我们选择WaveNet机器学习模型进行训练,并对模型的输出进行softmax处理。最终,经过训练后的模型将被保存以

    2024年02月16日
    浏览(55)
  • 竞赛 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月08日
    浏览(43)
  • 第55步 深度学习图像识别:CNN特征层和卷积核可视化(TensorFlow)

    一、写在前面 (1)CNN可视化 在理解和解释卷积神经网络(CNN)的行为方面,可视化工具起着重要的作用。以下是一些可以用于可视化的内容: (a)激活映射(Activation maps): 可以显示模型在训练过程中的激活情况,这可以帮助我们理解每一层(或每个过滤器)在识别图像

    2024年02月14日
    浏览(74)
  • 竞赛选题 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月07日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包