数学建模:TOPSIS分析

这篇具有很好参考价值的文章主要介绍了数学建模:TOPSIS分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

TOPSIS分析法

算法流程

  1. 假设有m个评价对象,n个评价指标,首先需要进行指标的正向化
    1. 极大型
    2. 极小型
    3. 单点型
    4. 区间型
  2. 然后对正向化后的矩阵进行标准化,得到 Z Z Z 矩阵:假设 X X X 为正向化后的矩阵,则 Z Z Z 是标准化后的矩阵:

X = [ x 11 x 11 . . . x 1 n x 21 x 22 . . . x 2 n ⋮ ⋮ ⋱ ⋮ x m 1 x m 2 . . . x m n ] ; X=\begin{bmatrix}x_{11}&x_{11}&...&x_{1n}\\x_{21}&x_{22}&...&x_{2n}\\\vdots&\vdots&\ddots&\vdots\\x_{m1}&x_{m2}&...&x_{mn}\end{bmatrix}; X= x11x21xm1x11x22xm2.........x1nx2nxmn ;

Z i j = x i j ∑ i = 1 n x i j 2 Z_{ij}=\frac{x_{ij}}{\sqrt{\sum_{i=1}^nx_{ij}^2}} Zij=i=1nxij2 xij

  1. 得到标准化后的矩阵后,我们要进行打分:计算出第 i i i个评价对象与最大值的距离 D i + D^{+}_i Di+ ,和最小值的距离 D i − D^{-}_i Di
    1. 计算带组合权重的 TOPSIS 分析法还需要 D i + D^{+}_i Di+ D i − D^{-}_i Di 分别再乘以权重 W W W
      然后再开方。

Z = [ z 11 z 11 . . . z 1 n z 21 z 22 . . . z 2 n ⋮ ⋮ ⋱ ⋮ z m 1 z m 2 . . . z m n ] ; Z=\begin{bmatrix}z_{11}&z_{11}&...&z_{1n}\\z_{21}&z_{22}&...&z_{2n}\\\vdots&\vdots&\ddots&\vdots\\z_{m1}&z_{m2}&...&z_{mn}\end{bmatrix}; Z= z11z21zm1z11z22zm2.........z1nz2nzmn ;

最大值 ( z 1 + , z 2 + . . . z n + ) = ( max ⁡ { z 11 , z 21 , . . . , z m 1 } , max ⁡ { z 12 , z 22 , . . . , z m 2 } , . . . , max ⁡ { z 1 n , z 2 n , . . . , z m n } ) ∣ 最大值(z^{+}_1,z^{+}_2 ...z^{+}_n) = \left.\left(\max\begin{Bmatrix}z_{11},z_{21},...,z_{m1}\end{Bmatrix},\max\begin{Bmatrix}z_{12},z_{22},...,z_{m2}\end{Bmatrix},...,\max\begin{Bmatrix}z_{1n},z_{2n},...,z_{mn}\end{Bmatrix}\right)\right| 最大值(z1+,z2+...zn+)=(max{z11,z21,...,zm1},max{z12,z22,...,zm2},...,max{z1n,z2n,...,zmn})

最小值 ( z 1 − , z 2 − . . . z n − ) = ( min ⁡ { z 11 , z 21 , . . . , z m 1 } , min ⁡ { z 12 , z 22 , . . . , z m 2 } , . . . , min ⁡ { z 1 n , z 2 n , . . . , z m n } ) ∣ 最小值(z^{-}_1,z^{-}_2 ...z^{-}_n) = \left.\left(\min\begin{Bmatrix}z_{11},z_{21},...,z_{m1}\end{Bmatrix},\min\begin{Bmatrix}z_{12},z_{22},...,z_{m2}\end{Bmatrix},...,\min\begin{Bmatrix}z_{1n},z_{2n},...,z_{mn}\end{Bmatrix}\right)\right| 最小值(z1,z2...zn)=(min{z11,z21,...,zm1},min{z12,z22,...,zm2},...,min{z1n,z2n,...,zmn})

D i + = ∑ j = 1 m ( z j + − z i j ) 2 D_{i}^{+}=\sqrt{\sum_{j=1}^{m}(z_{j}^{+}-z_{ij})^{2}} Di+=j=1m(zj+zij)2

D i − = ∑ j = 1 m ( z j − − z i j ) 2 {\cal D}_{i}^{-}=\sqrt{\sum_{j=1}^{m}(z_{j}^{-}-z_{ij})^{2}} Di=j=1m(zjzij)2

  1. 计算出第 i i i 个评价对象未归一化后的得分: S i S_i Si ,很明显 0 < = S i < = 1 0<= S_i <=1 0<=Si<=1,且 S i S_i Si 越大 D i + D^{+}_i Di+ 越小,越接近最大值

S i = D i − D i + + D i − S_i=\frac{D_i^-}{D_i^++D_i^-} Si=Di++DiDi

  1. 计算归一化后的得分:即每分数除以所有分数之和:

s t a n d _ S = S i ∑ i = 1 n S i stand\_S=\frac{S_i}{\sum_{i=1}^nS_i} stand_S=i=1nSiSi文章来源地址https://www.toymoban.com/news/detail-682153.html

程序代码

function [score]=mfunc_TOPSIS(data,W)  
    % TOPSIS方法:求解每个对象的综合评价得分
    % paramts: 
    %      data: 原始数据矩阵,(m,n) m为评价对象,n为评价指标
    %      W: 每个指标的初始权重
    % returns:
    %      Score:每个评价对象的综合得分

    %X输入的数据,W各指标的权重
    [n,~]=size(data);
    %Z=zscore(X);
    Z = data ./ repmat(sum(data.*data) .^ 0.5, n, 1); %矩阵标准化
    V_D = sum(((Z - repmat(max(Z),n,1)) .^ 2 ) .* repmat(W,n,1) ,2) .^ 0.5; 
    V_X = sum(((Z - repmat(min(Z),n,1)) .^ 2 ) .* repmat(W,n,1) ,2) .^ 0.5; 
    S = V_X ./ (V_D+V_X); %未归一化得分
    Score_S = S / sum(S); %归一化得分,即为每个企业的投资风险评分,值越大,投资风险也越大
    % score=Score_S;
    score=100*Score_S/max(Score_S);
end

到了这里,关于数学建模:TOPSIS分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数学建模】《实战数学建模:例题与讲解》第十二讲-因子分析、判别分析(含Matlab代码)

    本系列侧重于例题实战与讲解,希望能够在例题中理解相应技巧。文章开头相关基础知识只是进行简单回顾,读者可以搭配课本或其他博客了解相应章节,然后进入本文正文例题实战,效果更佳。 如果这篇文章对你有帮助,欢迎点赞与收藏~ 判别分析是一种统计方法,它根据

    2024年02月04日
    浏览(73)
  • 数学建模之层次分析法(含MATLAB代码)

    层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是 一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次 分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 基本

    2024年02月01日
    浏览(59)
  • 数学建模之回归分析算法(含matlab源代码)

    目录 一、一元线性回归 1、步骤  2、matlab命令(多元线性回归) 3、举例  二、一元非线性回归  三、多项式回归 1、一元多项式回归  应用  2、多元二项式 应用  四、非线性回归  应用 五、 逐步回归  应用    r²和F越大越好 p越小越好      从残差图可以看出,除第二个

    2024年02月09日
    浏览(68)
  • 【数学建模】单、多因素试验的方差分析(Matlab代码实现)

    目录   1 概述 2 单因素方差分析 2.1 语法 2.2 算例 1 2.2.1 算例 2.2.2 Matlab代码 2.2.3 结果 2.3 算例2 2.3.1 算例 2.3.2 Matlab代码 2.4 算例3 2.4.1 算例 2.4.2 Matlab代码 2.4.3 结果 2.5 算例4(不均衡样本) 2.5.1 算例  2.5.2 Matlab代码 2.5.3 结果 3 双因子方差分析 3.1 语法 3.2 算例 3.3 Matlab代码 3

    2024年02月06日
    浏览(38)
  • 【数学建模学习】matlab实现评价模型——层次分析法(AHP)

    目录 1概述  2算法实现流程 3实例  4matlab实现层次分析法 5计算结果 层次分析法,简称AHP,是评价模型中的一种算法,指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。层次分析法的缺陷在于判断矩阵是主观决定的,

    2024年02月04日
    浏览(56)
  • 数学建模———层次分析法及其matlab语法,函数和代码实现

    层次分析法思想登场 建模比赛中最基础的模型之一,其主要用于解决评价类问题(例如:选择那种方案最好,哪位运动员或者员工表现的更优秀。) 评价类问题字眼: 评价的目标是什么? 达到这个目标有那几种方案? 评价准则或指标是什么? 确定权重的方方法——分而治

    2024年02月15日
    浏览(46)
  • 【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

    【2023五一杯数学建模】B题 快递需求分析 31页论文 请依据以下提供的附件数据和背景内容,建立数学模型,完成接下来的问题:问题背景是,网络购物作为一种重要的消费方式,带动着快递服务需求飞速增长,为我国经济发展做出了重要贡献。准确地预测快递运输需求数量对

    2024年02月01日
    浏览(73)
  • 数学建模学习(58):简单点六分钟学会matlab应用层次分析(AHP)

    这两篇呢都比较偏原理,想要模仿出来还是挺费劲,这里我们讲一下简单的套路。至少你应该从这两篇文章学会到判断矩阵怎么写出来的。 二、原理过程与套路实现 一致性指标为(一致性指标用CI计算,CI越小,说明一致性越大): 判断矩阵元素 的标度方法如下,这个我已

    2024年04月27日
    浏览(39)
  • 数学建模预测模型MATLAB代码大合集及皮尔逊相关性分析(无需调试、开源)

           选取2000-2017年x省碳排放量为训练集,2018-2022x省碳排放量作为测试集,以此来预测2023-2026年x省碳排放量。设置训练次数为 1000次,学习速率为0.2;对该训练集BP神经网络模型拟合后模型的训练样本、验 证样本和测试样本的均方误差分别是0.000012、0.0023、0.0042,整体的误

    2024年02月08日
    浏览(36)
  • 【数学建模美赛 | 国赛必学模型算法精讲】层次分析法——模型原理及Matlab+Python双语言代码演示

    层次分析法 是 评价决策类 中一个比较常用的方法,很多留意美赛赛题的小伙伴们就会发现,在美赛EF类题目的历年O奖论文中,层次分析法出现的概率是非常高的。层次分析法呢一般是针对评价决策类的题目,让我们评价或选择一个可能更好、更优的政策及方案,那这样呢,

    2024年01月25日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包