MindSponge分子动力学模拟——定义一个分子系统(2023.08)

这篇具有很好参考价值的文章主要介绍了MindSponge分子动力学模拟——定义一个分子系统(2023.08)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

技术背景

在前面两篇文章中,我们分别介绍了分子动力学模拟软件MindSponge的软件架构和安装与使用教程。这里我们进入到实用化阶段,假定大家都已经在本地部署好了基于MindSpore的MindSponge的编程环境,开始用MindSponge去做一些真正的分子模拟的工作。那么分子模拟的第一步,我们就需要在MindSponge中去定义一个分子系统Molecule()。

基础类Molecule的解析

我们先来看一下源代码中的Molecule这个类的自我介绍:

class Molecule(Cell):
    r"""
    Base class for molecular system, used as the "system module" in MindSPONGE.
    The `Molecule` Cell can represent a molecule or a system consisting of multiple molecules.
    The major components of the `Molecule` Cell is the `Residue` Cell. A `Molecule` Cell can
    contain multiple `Residue` Cells.

    Args:
        atoms(Union[List[Union[str, int]], ndarray]):       Array of atoms. The data in array can be str of atom
                                                            name or int of atomic number. Defulat: None
        atom_name(Union[List[str], ndarray]):               Array of atom name with data type `str`. Defulat: None
        atom_type(Union[List[str], ndarray]):               Array of atom type with data type `str`. Defulat: None
        atom_mass(Union[Tensor, ndarray, List[float]]):     Array of atom mass of shape `(B, A)` with data type
                                                            `float`. Defulat: None
        atom_charge(Union[Tensor, ndarray, List[float]]):   Array of atom charge of shape `(B, A)` with data type
                                                            `float`. Defulat: None
        atomic_number(Union[Tensor, ndarray, List[float]]): Array of atomic number of shape `(B, A)` with data type
                                                            `int`. Defulat: None
        bond(Union[Tensor, ndarray, List[int]]):            Array of bond connection of shape `(B, b, 2)` with data
                                                            type `int`. Defulat: None
        coordinate(Union[Tensor, ndarray, List[float]]):    Tensor of atomic coordinates :math:`R` of shape
                                                            `(B, A, D)` with data type `float`. Default: None
        pbc_box(Union[Tensor, ndarray, List[float]]):       Tensor of box size :math:`\vec{L}` of periodic boundary
                                                            condition (PBC). The shape of tensor is `(B, D)`,
                                                            and the data type is `float`. Default: None
        template(Union[dict, str, List[Union[dict, str]]]): Template for molecule. It can be a `dict` in MindSPONGE
                                                            template format or a `str` for the filename of a
                                                            MindSPONGE template file. If a `str` is given,
                                                            it will first look for a file with the same name in the
                                                            current directory. If the file does not exist, it will
                                                            search in the built-in template directory of
                                                            MindSPONGE (`mindsponge.data.template`).
                                                            Default: None.
        residue(Union[Residue, List[Residue]]):             Residue or a list of residues. If template is not None,
                                                            only the residues in the template will be used.
                                                            Default: None.
        length_unit(str):                                   Length unit. If `None` is given, the global length
                                                            units will be used. Default: None

    Outputs:
        - coordinate, Tensor of shape `(B, A, D)`. Data type is float.
        - pbc_box, Tensor of shape `(B, D)`. Data type is float.

    Supported Platforms:
        ``Ascend`` ``GPU``

    Symbols:
        B:  Batchsize, i.e. number of walkers in simulation
        A:  Number of atoms.
        b:  Number of bonds.
        D:  Spatial dimension of the simulation system. Usually is 3.
    """

可以先看一下Molecule所接收的信息,其实可以主要分为以下几大类别:

  1. 原子特征信息。用于区分不同原子之间的差异性,比如atom_name原子名称、atom_type原子类型、atomic_number原子序数等。
  2. 拓扑信息。在构建Molecule的时候需要传入键连信息bond,否则不带键连关系的Molecule计算出来的力场能量是错误的。
  3. 构象信息。主要是原子坐标coordinate和周期性边界条件pbc_box,作为近邻表计算和力场能量计算的输入,但不作为拓扑连接信息的输入。
  4. 模块化信息。除了逐个原子的去构建一个Molecule,还可以定义好一系列完整的残基Residue再输入给Molecule进行构建,或者通过模板template来进行构建。
  5. 单位信息。主要包含长度单位length_unit和能量单位energy_unit。

上述主要是给Molecule的输入信息,输入给Molecule之后在内部构建build一次,才能得到一个最终的分子系统对象。接下来看看构建之后的Molecule的一些重要内置属性(self.xxx):

  1. 原子特征信息。除了上述传入的那些信息之外,还有原子数num_atoms,batch数量num_walker以及灵活的维度数量dimension。除了每个原子的基本类型外,还保存了一个heavy_atom_mask重原子的信息,便于快速区分重原子和氢原子。
  2. 拓扑信息。除了键连关系bonds信息,还有h_bonds氢原子成键的信息。
  3. 构象信息。主要就是coordinate原子坐标,因为需要在Updater中更新迭代,因此这里的coordinate需要是一个Parameter的类型,而不是普通的Tensor。
  4. 模块化信息。在构建的过程中,对传入的Residue也都进行了extend,因此最终Residue内部的这些信息,都会被合并到前面提到的Molecule的原子特征信息和拓扑信息、构象信息中,同时会保留一个atom_resid用于追溯原子所在的residue。如果在template模板中有配置一些约束限制,比如settle约束算法相关的参数settle_index和settle_length,也会保存在Molecule的属性中,用于后续约束算法的计算。
  5. 单位信息。units把相关的单位信息都存储在一个Units对象中,支持从global units中调用,可以随时调用。

除了内置属性,Molecule还有一些内置函数可以关注一下:

  1. 单位转化。主要是convert_length_from和convert_length_to两个函数,用于执行长度单位的变换。
  2. 系统扩展函数。比如copy函数,可以用于将本系统拷贝一份,但是该拷贝的过程会生成一个新的对象,而不是原有的Molecule对象。但如果是多个的Molecule对象,可以用内置函数append进行合并。如果需要节省一些麻烦,想对系统进行扩展,可以直接使用内置函数reduplicate,在系统内部复制一份。类似于append的功能,可以使用内置函数add_residue来添加新的residue。上述几种方法主要针对于非周期性的体系,如果是带有周期性边界条件的体系,直接使用repeat_box函数即可完成对体系的快速复制。
  3. 构建函数。一般情况下对于只是想做MD的童鞋而言,没有必要使用到build_system构建系统和build_space构建构象这些函数,但是如果有需要自行调整Molecule的内容时,就需要重新build一次。
  4. 补介质函数。一般给定的pdb文件会丢失一些氢原子和溶剂分子的信息,这些都可以在做模拟之前手动补上。目前MindSponge支持的是对体系加水分子fill_water,可以指定溶剂层的厚度,或者指定一个盒子的大小。
  5. 回调函数。在深度学习或者MindSponge分子动力学模拟的过程中,我们会使用到回调函数CallBack来对输出内容进行追踪。但是CallBack本身是不保存任何体系相关的信息的,因此追踪的内容其实也是从Molecule和ForceField内部进行回调。比如在Molecule中,可以调用get_atoms,get_coordinate,get_pbc_box等等函数,而如果直接使用MindSpore的Cell中所特有的construct函数,这里也会返回coordinate和pbc_box两个信息,这些都可以认为是Molecule类的“回调函数”。

从模板定义一个分子

关于MindSponge的安装和使用,可以参考这篇文章,在这里我们就不重复赘述了,假设大家已经完成了MindSponge的安装。但是需要提一句的是,在开始MindSponge模拟前,最好在python脚本的最前面加上这样一些环境变量的配置,否则容易报错:

import os
os.environ['GLOG_v']='4'
os.environ['MS_JIT_MODULES']='sponge'

接下来我们就可以简单的使用模板文件去创建一个新的分子:

from sponge import Molecule
system = Molecule(template='water.spce.yaml')
print ('The number of atoms in the system is: ', system.num_atoms)
print ('All the atom names in the system are: ', system.atom_name)
print ('The coordinates of atoms are: \n{}'.format(system.coordinate.asnumpy()))

输出的结果如下所示:

The number of atoms in the system is:  3
All the atom names in the system are:  [['O' 'H1' 'H2']]
The coordinates of atoms are: 
[[[ 0.          0.          0.        ]
  [ 0.08164904  0.0577359   0.        ]
  [-0.08164904  0.0577359   0.        ]]]

这里因为water.spce.yaml是一个预置的模板,类似的还有water.tip3p.yaml。这种预置的模板我们可以直接当做template来创建,但如果是用户自行定义的模板文件,最好在这里写清楚yaml文件的绝对路径,否则会导致报错。相关yaml文件的内容如下所示:

template:
  base: water_3p.yaml
  WAT:
    atom_mass: [15.9994, 1.008, 1.008]
    atom_charge: [-0.8476, 0.4238, 0.4238]
    settle:
      mandatory: false
      length_unit: nm
      distance:
        OW-HW: 0.1
        HW-HW: 0.16330
molecule:
  residue:
  - WAT
  length_unit: nm
  coordinate:
  - [0.0, 0.0, 0.0]
  - [0.081649043, 0.057735897, 0.0]
  - [-0.081649043, 0.057735897, 0.0]

这里的base是指向了另外一个较为基础的yaml参数文件:

template:
  WAT:
    atom_name: [O, H1, H2]
    atom_type: [OW, HW, HW]
    atom_mass: [16.00, 1.008, 1.008]
    atomic_number: [8, 1, 1]
    bond:
    - [0, 1]
    - [0, 2]
    head_atom: null
    tail_atom: null

有了这些参考,用户就可以自行定义一些模板,用于计算。

从文件定义一个分子

MindSponge也支持一些特定格式的分子导入,比如mol2格式的分子和pdb格式的蛋白质分子,这个章节介绍一下如何将文件导入为一个MindSponge的Molecule。比如我这里有一个非常简单的pdb格式的多肽链:

REMARK   Generated By Xponge (Molecule)
ATOM      1    N ALA     1      -0.095 -11.436  -0.780
ATOM      2   CA ALA     1      -0.171 -10.015  -0.507
ATOM      3   CB ALA     1       1.201  -9.359  -0.628
ATOM      4    C ALA     1      -1.107  -9.319  -1.485
ATOM      5    O ALA     1      -1.682  -9.960  -2.362
ATOM      6    N ARG     2      -1.303  -8.037  -1.397
ATOM      7   CA ARG     2      -2.194  -7.375  -2.328
ATOM      8   CB ARG     2      -3.606  -7.943  -2.235
ATOM      9   CG ARG     2      -4.510  -7.221  -3.228
ATOM     10   CD ARG     2      -5.923  -7.789  -3.136
ATOM     11   NE ARG     2      -6.831  -7.111  -4.087
ATOM     12   CZ ARG     2      -8.119  -7.421  -4.205
ATOM     13  NH1 ARG     2      -8.686  -8.371  -3.468
ATOM     14  NH2 ARG     2      -8.844  -6.747  -5.093
ATOM     15    C ARG     2      -2.273  -5.882  -2.042
ATOM     16    O ARG     2      -1.630  -5.388  -1.119
ATOM     17    N ALA     3      -3.027  -5.119  -2.777
ATOM     18   CA ALA     3      -3.103  -3.697  -2.505
ATOM     19   CB ALA     3      -1.731  -3.041  -2.625
ATOM     20    C ALA     3      -4.039  -3.001  -3.483
ATOM     21    O ALA     3      -4.614  -3.643  -4.359
ATOM     22    N ALA     4      -4.235  -1.719  -3.394
ATOM     23   CA ALA     4      -5.126  -1.057  -4.325
ATOM     24   CB ALA     4      -6.538  -1.625  -4.233
ATOM     25    C ALA     4      -5.205   0.436  -4.039
ATOM     26    O ALA     4      -4.561   0.930  -3.116
ATOM     27  OXT ALA     4      -5.915   1.166  -4.728
TER

使用MindSponge来读取该pdb文件的方法为[*注:由于一般pdb文件中会忽略氢原子,因此加载的时候需要使用rebuild_hydrogen将其重构成一个完整的分子]:

from sponge import Protein
system = Protein('case1.pdb', rebuild_hydrogen=True)
print ('The number of atoms in the system is: ', system.num_atoms)
print ('All the atom names in the system are: ', system.atom_name)

相应的输出结果为:

[MindSPONGE] Adding 57 hydrogen atoms for the protein molecule in 0.007 seconds.
The number of atoms in the system is:  57
All the atom names in the system are:  [['N' 'CA' 'CB' 'C' 'O' 'H1' 'H2' 'H3' 'HA' 'HB1' 'HB2' 'HB3' 'N' 'CA'
  'CB' 'CG' 'CD' 'NE' 'CZ' 'NH1' 'NH2' 'C' 'O' 'H' 'HA' 'HB2' 'HB3' 'HG2'
  'HG3' 'HD2' 'HD3' 'HE' 'HH11' 'HH12' 'HH21' 'HH22' 'N' 'CA' 'CB' 'C'
  'O' 'H' 'HA' 'HB1' 'HB2' 'HB3' 'N' 'CA' 'CB' 'C' 'O' 'OXT' 'H' 'HA'
  'HB1' 'HB2' 'HB3']]

可以看到的是,在对应的位置上,我们将氢原子补在了一个相对合适的位置。一般情况下,重构完氢原子之后,需要对系统进行一个能量极小化,否则会导致初始系统的能量过于不稳定。具体的加氢效果可以看一下这个运行的结果:

MindSponge分子动力学模拟——定义一个分子系统(2023.08)

其实加氢是很难做到一步到位的,但是我们可以尽可能的将氢原子摆放在一个相对合理的位置,便于后续的能量计算和优化。

自定义分子

由于python这一编程语言的灵活性,使得我们不仅支持从文件和模板文件中去定义一个分子系统,还可以直接用脚本的形式传一系列的python列表给Molecule来构建一个分子系统。比如我们只传原子类型和坐标还有键连关系,就能构建一个简单的水分子:

from sponge import Molecule
system = Molecule(atoms=['O', 'H', 'H'],
                  coordinate=[[0, 0, 0], [0.1, 0, 0], [-0.0333, 0.0943, 0]],
                  bonds=[[[0, 1], [0, 2]]])
print ('The number of atoms in the system is: ', system.num_atoms)
print ('All the atom names in the system are: ', system.atom_name)
print ('The coordinates of atoms are: \n{}'.format(system.coordinate.asnumpy()))

相应的输出结果如下所示:

The number of atoms in the system is:  3
All the atom names in the system are:  [['O' 'H' 'H']]
The coordinates of atoms are: 
[[[ 0.      0.      0.    ]
  [ 0.1     0.      0.    ]
  [-0.0333  0.0943  0.    ]]]

总结概要

本文通过解析MindSponge的源码实现,详细介绍了在MindSponge中Molecule基础分子类的内置属性和内置函数,以及三种相应的分子系统定义方法:我们既可以使用yaml模板文件来定义一个分子系统,也可以从mol2和pdb文件格式中直接加载一个Molecule,还可以直接使用python列表的形式传入一些手动定义的内容,直接构建一个Molecule。有了最基础的分子系统之后,后面就可以开始定义一些能量项和迭代器,开始分子动力学模拟。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/mol-system.html

作者ID:DechinPhy

更多原著文章请参考:https://www.cnblogs.com/dechinphy/

打赏专用链接:https://www.cnblogs.com/dechinphy/gallery/image/379634.html

腾讯云专栏同步:https://cloud.tencent.com/developer/column/91958

CSDN同步链接:https://blog.csdn.net/baidu_37157624?spm=1008.2028.3001.5343

51CTO同步链接:https://blog.51cto.com/u_15561675文章来源地址https://www.toymoban.com/news/detail-682194.html

到了这里,关于MindSponge分子动力学模拟——定义一个分子系统(2023.08)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • GORMACS如何使用?一个方法快速完成动力学模拟计算

    GROMACS是一个功能强大的分子动力学的模拟软件,其在模拟大量分子系统的牛顿运动方面具有极大的优势。 它可以用分子动力学、随机动力学或者路径积分方法模拟溶液或晶体中的任意分子,进行分子能量的最小化,分析构象等。它的模拟程序包包含GROMACS力场(蛋白质、核苷酸

    2024年02月02日
    浏览(32)
  • 机器人学基础(3)-动力学分析和力-拉格朗日力学、机器人动力学方程建立、多自由度机器人的动力学方程建立

    本章节主要包括拉格朗日力学、拉格朗日函数及建立求解、多自由度机器人的动力学方程、机器人的静力分析、坐标系间力和力矩的变换,主要结合例题进行掌握理解 动力学分析是为了研究机器人应该以多大力进行驱动,虽然根据运动学方程+微分运动可以得到机器人的位置

    2024年02月05日
    浏览(64)
  • 【现代机器人学】学习笔记七:开链动力学(前向动力学Forward dynamics 与逆动力学Inverse dynamics)

    这节的内容主要讲述机器人动力学的内容。相对于本书其他部分运动学内容相比,把动力学一下子合成了一章。看完以后有三个感受: 1.本章难度相对其他章节较大,因此需要反复去看,以求对重要内容的眼熟,不求全部记住,但只求说起某块内容时,心中有数。2.阅读时一

    2024年02月14日
    浏览(48)
  • 二维离散动力学系统的混沌研究【基于matlab的动力学模型学习笔记_9】

    摘 要: 混沌(Chaos)是指发生在确定系统中的貌似随机的不规则运动,本文将基于经典的二维系统,然后根据动力学方程研究其混沌产生过程以及相对应的MATLAB仿真,再讨论Lyapunov指数以及正平衡点。 上一篇中介绍了一维系统,这次我们将维数提升到二。 /*仅当作学习笔记,

    2024年02月05日
    浏览(60)
  • 自动驾驶——车辆动力学模型

    A矩阵离散化 B矩阵离散化 反馈计算 前馈计算: 超前滞后反馈:steer_angle_feedback_augment 参考【运动控制】Apollo6.0的leadlag_controller解析 控制误差计算 横向距离误差计算 横向误差变化率计算 航向角误差计算 航向角误差变化率计算 参考:Apollo代码学习(三)—车辆动力学模型

    2024年02月12日
    浏览(57)
  • 盐构造发育的动力学机制

    盐构造可以由以下6 种机制触发引起(图 2)[18] :①浮力作用;②差异负载作用;③重力扩张作 用;④热对流作用;⑤挤压作用;⑥伸展作用。盐体 的塑性流动和非常规变形是盐构造的主要特点,岩 盐有时在几百m 深处就可以流动,这主要与盐的纯度、地温梯度和盐的干湿度等因

    2024年02月20日
    浏览(51)
  • 自动驾驶控制算法——车辆动力学模型

    考虑车辆 y 方向和绕 z 轴的旋转,可以得到车辆2自由度模型,如下图: m a y = F y f + F y r (2.1) ma_y = F_{yf} + F_{yr} tag{2.1} m a y ​ = F y f ​ + F yr ​ ( 2.1 ) I z ψ ¨ = l f F y f − l r F y r (2.2) I_zddotpsi = l_fF_{yf} - l_rF_{yr} tag{2.2} I z ​ ψ ¨ ​ = l f ​ F y f ​ − l r ​ F yr ​ ( 2.2 ) 经验公

    2024年01月18日
    浏览(58)
  • 旋翼无人机建模动力学公式整理

    C_T为升力系数,C_M为扭力系数,w为螺旋桨的转速 如果是‘十’字型的飞机 x,y,z轴的力矩为: d是机体中心到每个螺旋桨的距离,b是一个系数; f=Ct*W^2,Ct——升力系数,W——螺旋桨的转速 惯量矩阵为: 四个电机产生的力f1,f2,f3,f4,如果我们假设z轴向上为正,可以得到:

    2024年04月29日
    浏览(58)
  • 车辆运动学和动力学模型概述

    对车辆建立数字化模型,分为车辆运动学和动力学模型。 车辆运动学模型(Kinematic Model )把车辆完全视为刚体,主要考虑车辆的位姿(位置坐标、航向角)、速度、前轮转角等的关系,不考虑任何力的影响。 1.前提假设: 不考虑Z轴方向运动,默认车在二维平面上的运动 假设

    2024年02月13日
    浏览(51)
  • IK(反向动力学)简单原理与实现

    反向运动学 (IK) 是一种设置动画的方法,它翻转链操纵的方向。它是从叶子而不是根开始进行工作的。 要了解 IK 是如何进行工作的,首先必须了解 层次链接 和正向运动学的原则。 简单演示 现在举个手臂的例子。要设置使用正向运动学的手臂的动画,可以旋转大臂使它移离

    2023年04月09日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包