Netty核心源码解析(三)--NioEventLoop

这篇具有很好参考价值的文章主要介绍了Netty核心源码解析(三)--NioEventLoop。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

NioEventLoop介绍

NioEventLoop继承SingleThreadEventLoop,核心是一个单例线程池,可以理解为单线程,这也是Netty解决线程并发问题的最根本思路--同一个channel连接上的IO事件只由一个线程来处理,NioEventLoop中的单例线程池轮询事件队列,有新的IO事件或者用户提交的task时便执行对应的handler逻辑进行处理;

NioEventLoop循环执行三件事:

  1. 响应selector中的IO事件
  2. 检查任务队列中是否有用户提交的任务
  3. 检查定时任务是否到期,到期则移交至任务队列中

首先,一个NioEventLoop聚合一个selector对象,这个selector对象就是JDK NIO中的selector对象(Netty可以配置选择是否对JDK 中的selector优化,优化主要是对selectionkeys集合优化,后续详细解释),通过代码可以看到,NioEventLoop的构造器里完成了selector的创建----(具体的selector创建Netty通过继承了jdk的SelectorProvider来实现的)

Netty核心源码解析(三)--NioEventLoop,java,jvm,开发语言

 ,先看一下NioEventLoop的构造方法,NioEventLoop只提供了一个构造方法--

    NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
                 SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler,
                 EventLoopTaskQueueFactory queueFactory) {
        super(parent, executor, false, newTaskQueue(queueFactory), newTaskQueue(queueFactory),
                rejectedExecutionHandler);
        this.provider = ObjectUtil.checkNotNull(selectorProvider, "selectorProvider");
        this.selectStrategy = ObjectUtil.checkNotNull(strategy, "selectStrategy");
        final SelectorTuple selectorTuple = openSelector();
        this.selector = selectorTuple.selector;
        this.unwrappedSelector = selectorTuple.unwrappedSelector;
    }

构造函数中主要完成了selector的创建,选择器的实现策略,任务队列的创建,

先大概说一下run()方法的逻辑--

  1. 调用selector.select方法获取就绪IO事件的个数
  2. 判断是否有task---非定时任务
  3. 更新下一次定时任务的执行时间
  4. 处理selectedKeys---处理IO事件
  5. 执行任务---
    1. 获取到期的定时任务
    2. 根据配置控制任务异步任务执行时间
  6. 空轮训问题的处理

看一下具体实现--

首先获取IO就绪IO事件的个数

strategy = selectStrategy.calculateStrategy(selectNowSupplier, hasTasks());

calculateStrategy方法 --

  1. 如果当前有任务,则返回selectNow()方法的值---就绪的selected keys 个数
  2. 如果没有任务则返回-1;

然后看一下strategy为-1 的时候--

//返回-1的时候表示没有任务,此时计算
case SelectStrategy.SELECT:
       long curDeadlineNanos = nextScheduledTaskDeadlineNanos();
       if (curDeadlineNanos == -1L) {
              curDeadlineNanos = NONE; // nothing on the calendar
       }
       nextWakeupNanos.set(curDeadlineNanos);
       try {
//如果还是没有任务就需要重新计算一下就绪IO事件的个数,所以第一步在没有任务的时候直接将strategy赋值为-1是为了给处理定时任务留机会;
             if (!hasTasks()) {
                   strategy = select(curDeadlineNanos);
             }
       } finally {
       //他的更新只是为了阻止不必要的选择器唤醒,所以lazySet的使用是可以的(没有比赛条件)
           nextWakeupNanos.lazySet(AWAKE);
    }

taskQueue中没有任务的时候获取定时任务中最近要生效的任务时间,然后再执行一次select方法;

之后根据ioRation(ioRation默认为50)来处理channel的IO事件和执行taskQueue中的任务;这里分三种情况:

  1. ioRation为100的时候,处理所有的IO事件并执行taskQueue中的所有任务;
     if (ioRatio == 100) {
                        try {
                            if (strategy > 0) {
                                processSelectedKeys();
                            }
                        } finally {
                            // Ensure we always run tasks.
                            ranTasks = runAllTasks();
                        }
                    }
  2. ioRation小于100并且有就绪的IO事件的时候,先处理所有的就绪IO事件,然后以处理IO事件的时间作为基准分配异步任务的执行时间
    else if (strategy > 0) {
                        final long ioStartTime = System.nanoTime();
                        try {
                            processSelectedKeys();
                        } finally {
                            // Ensure we always run tasks.
                            final long ioTime = System.nanoTime() - ioStartTime;
                            ranTasks = runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                        }
                    }
  3. ioRation小于100且没有就绪IO事件的时候只执行一个异步任务
else {
                    ranTasks = runAllTasks(0); // This will run the minimum number of tasks
                }

最后,判断是否发生了select是否发生了空轮训--
 

if (ranTasks || strategy > 0) {
                    if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS && logger.isDebugEnabled()) {
                        logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",
                                selectCnt - 1, selector);
                    }
                    selectCnt = 0;
                } else if (unexpectedSelectorWakeup(selectCnt)) { // Unexpected wakeup (unusual case)
                    selectCnt = 0;
                }

至此,一次Eventloop循环就处理完了,总结一下---文章来源地址https://www.toymoban.com/news/detail-682309.html

  1. Eventloop是Netty运行的核心逻辑,主要处理三件事--IO读写事件,用户提交的异步任务,处理JDK中的空轮训问题;
  2. 核心逻辑体现在run()方法中;run()方法首先根据异步任务队列中是否有任务需要执行来决定是否需要处理定时任务;
  3. 如果有异步任务需要处理则同时获取就绪IO事件的个数;如果没有异步任务则计算定时任务的处理时间---处理完定时任务如果还是没有任务提交则轮询IO事件
  4. 根据配置控制时间执行IO事件和异步任务;

到了这里,关于Netty核心源码解析(三)--NioEventLoop的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Spring源码系列:核心概念解析

    本文旨在为读者解析Spring源码中的关键类,以便读者在深入阅读源码时,能够了解关键类的作用和用途。在阅读Spring源码时,经常会遇到一些不熟悉的概念,了解关键类的作用可以帮助读者更好地理解这些概念。 BeanDefinition是Spring框架中的一个重要概念,它定义了一个Bean的基

    2023年04月20日
    浏览(35)
  • Spring源码(二)Spring底层架构核心概念解析

    BeanDefinition表示 Bean定义 ,BeanDefinition中存在很多属性用来描述一个Bean的特点。比如: class,表示Bean类型 scope,表示Bean作用域,单例或原型等 lazyInit:表示Bean是否是懒加载 initMethodName:表示Bean初始化时要执行的方法 destroyMethodName:表示Bean销毁时要执行的方法 在Spring中,我

    2024年02月15日
    浏览(27)
  • 万字长文解析AQS抽象同步器核心原理(深入阅读AQS源码)

    在争用激烈的场景下使用基于CAS自旋实现的轻量级锁有两个大的问题: CAS恶性空自旋会浪费大量的CPU资源。 在SMP架构的CPU上会导致“总线风暴”。 解决CAS恶性空自旋的有效方式之一是以空间换时间,较为常见的方案有两种:分散操作热点、使用队列削峰。 JUC并发包使用的是

    2024年02月11日
    浏览(32)
  • ZooKeeper源码解析——学习ApacheZookeeper原理,掌握其核心组件的数据模型、监听通知机制等

    作者:禅与计算机程序设计艺术 随着互联网的飞速发展,各种信息数据越来越多,数据的存储也越来越依赖于分布式文件系统或NoSQL数据库。而传统的单机数据库往往不具备弹性可扩展性和高可用容错能力,在面对海量数据时难免会遇到性能瓶颈。为了解决这一问题,人们又

    2024年02月10日
    浏览(27)
  • (02)Cartographer源码无死角解析-(75) 2D后端优化→整体复盘,理解后端优化核心

    讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下: (02)Cartographer源码无死角解析- (00)目录_最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/127350885   文末正下方中心提供了本人 联系方式, 点击本人照片

    2024年02月13日
    浏览(35)
  • Netty核心技术十一--用Netty 自己 实现 dubbo RPC

    RPC(Remote Procedure Call) :远程 过程调用,是一个计算机 通信协议。该协议允许运 行于一台计算机的程序调 用另一台计算机的子程序, 而程序员无需额外地为这 个交互作用编程 两个或多个应用程序都分 布在不同的服务器上,它 们之间的调用都像是本地 方法调用一样(如图

    2024年02月16日
    浏览(35)
  • 【面试 分布式锁详细解析】续命 自旋锁 看门狗 重入锁,加锁 续命 解锁 核心源码,lua脚本解析,具体代码和lua脚本如何实现

    自己实现锁续命 在 controller 里开一个 线程 (可以为 守护线程) 每10秒,判断一个 这个 UUID是否存在,如果 存在,重置为 30秒。 如果不存在,守护线程 也结束。 基本的key value 基本的使用 setIfAbsent存在不设置 16384 Redis 集群没有使用一致性hash, 而是引入了哈希槽的概念。 R

    2023年04月09日
    浏览(31)
  • 网络编程的无冕之王-Netty入门和核心组件介绍

    最近我在研究Netty,之前只是经常听说,并没有实际做过研究,为什么突然要好好研究一下它,主要是因为前段时间,我在看RocketMQ底层原理的时候发现它的底层的网络通信都是基于Netty,然后网上一查,果然,大家太多的耳熟能详的工具组件,都是基于Netty做的开发。大家看

    2024年02月10日
    浏览(39)
  • (02)Cartographer源码无死角解析-(80) 核心要点→local坐标系、子图坐标系、切片坐标系、地图坐标系等相转换与联系

    讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下: (02)Cartographer源码无死角解析- (00)目录_最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/127350885   文末正下方中心提供了本人 联系方式, 点击本人照片

    2024年02月16日
    浏览(32)
  • Java源码-servlet源码解析

    Servlet是运行在Web服务器上的Java组件,用于处理客户端请求并生成响应。下面将介绍Servlet的源码解析。 Servlet接口源码解析 Servlet接口是所有Servlet类必须实现的接口。该接口定义了Servlet生命周期方法和服务方法。 init方法初始化Servlet,service方法处理请求并生成响应。destroy方

    2024年02月13日
    浏览(28)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包