MLOps-预测糖尿病示例

这篇具有很好参考价值的文章主要介绍了MLOps-预测糖尿病示例。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

MLOps定义

  MLOps是一门工程学科,旨在统一 ML 系统开发(dev)和 ML 系统部署(ops),以标准化过程生产高性能模型的持续交付。实现 MLOps 有助于使机器学习工作负载可靠且可重现。 例如,你将能够在始终将模型保留在生产环境中时根据需要监视、重新训练和重新部署模型。

MLOps 体系结构包括以下部分:

  1. 设置:为解决方案创建所有必需的 Azure 资源。
  2. 模型开发(内部循环):浏览并处理数据来训练和评估模型。
  3. 持续集成:打包并注册模型。
  4. 模型部署(外部循环):部署模型。
  5. 持续部署:测试模型并提升到生产环境。
  6. 监视:监视模型和终结点性能

MLOps-预测糖尿病示例

MLOps-预测糖尿病示例

    接下来将以机器学习中常用的糖尿病数据集(糖尿病数据集 - Azure Open Datasets | Microsoft Learn)使用Azure机器学习工作室对该数据集训练模型并部署。

  创建工作区

     Azure 机器学习工作区来使用设计器。 工作区是 Azure 机器学习的顶级资源,提供一个中心位置用于处理 Azure 机器学习中创建的所有项目。

MLOps-预测糖尿病示例

  导入数据

    在新建立的工作区中创建数据资产,并标记好名称和数据类型。

MLOps-预测糖尿病示例

    选择数据源并导入数据。

MLOps-预测糖尿病示例

MLOps-预测糖尿病示例

    预览数据并设置数据格式后创建数据资产。

MLOps-预测糖尿病示例

MLOps-预测糖尿病示例

  创建计算资源

    选择合适的计算群集创建(这里选择了一个最便宜的)。

MLOps-预测糖尿病示例

  创建管道

    Azure 机器学习管道可将多个机器学习和数据处理步骤组织成单个资源。

MLOps-预测糖尿病示例

    通过拉取左侧组件到右侧的画布上即可进行组件的放置,并可在对应的输入/输出间建立管道,并且可以在组件上设置对应的参数。

MLOps-预测糖尿病示例

    最终创建的管道如下:其中“Prediction-diabetes”为准备好的数据,“Select Columns in Dataset”组件选择有效的数据列,“Normalize Data”组件将数据正则化,“Split Data”组件将数据按照7:3的比例分为训练集和测试集,利用“Two-Class Logistic Regression”和“Train Model”组件对训练集数据进行二元回归建立模型,“Score Model”和“Evaluate Model”组件对模型进行评分和评估。

MLOps-预测糖尿病示例

  查看结果

    配置前面创建的计算集群并提交后等待一段时间便可查看模型评估结果。

MLOps-预测糖尿病示例

MLOps-预测糖尿病示例

  创建实时推理管道并部署

    若要部署管道,必须先将训练管道转换为实时推理管道。 此过程会删除训练组件,并添加 Web 服务输入和输出来处理请求。如图所示配置好后便可以创建实时推理管道并部署。

MLOps-预测糖尿病示例

  通过终端测试数据

    终端部署成功后,在左侧“服务终端”中便可找到已部署的服务终端。输入数据即可使用训练好的模型进行分析。

MLOps-预测糖尿病示例

MLOps-预测糖尿病示例

 文章来源地址https://www.toymoban.com/news/detail-682380.html

 

 

 

 

 

 

  

 

到了这里,关于MLOps-预测糖尿病示例的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 糖尿病预测模型-Pima印第安人数据集-论文_企业科研

    糖尿病概述 糖尿病有一型和二型,是由于胰腺分泌胰岛素紊乱或人体无法有效利用其产生的胰岛素而发生的一种慢性疾病,是21世纪人类面临的健康问题之一.糖尿病伴有弥漫性并发症,其包括心血管病变、肾脏疾病、高血压、中风等、眼部疾病、下肢截肢上百种,由此增

    2024年02月09日
    浏览(41)
  • 互联网加竞赛 基于机器学习与大数据的糖尿病预测

    🔥 优质竞赛项目系列,今天要分享的是 基于机器学习与大数据的糖尿病预测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-

    2024年01月16日
    浏览(44)
  • 计算机毕设 基于机器学习与大数据的糖尿病预测

    # 1 前言 🚩 基于机器学习与大数据的糖尿病预测 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 本项目的目的主要是对糖尿病进行预测。主要依托某医院体检数据(处理后),首先进行了数据的描述性统计。后续针对数据的特征进行特

    2024年02月11日
    浏览(41)
  • 使用Keras构建分类问题的MLP神经网络——用于糖尿病预测

            大家好,我是带我去滑雪!          Keras 是一个用于构建和训练深度学习模型的高级 API,它基于 Python编写,并能够运行于 TensorFlow, CNTK, 或者 Theano 等深度学习框架之上。Keras简化了深度神经网络的构建流程,让用户能够更加简单、快速地搭建一个完整的深度学习模

    2024年02月05日
    浏览(42)
  • 【阿旭机器学习实战】【36】糖尿病预测---决策树建模及其可视化

    【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。 关注GZH: 阿旭算法与机器学习 ,回复:“ ML36 ”即可获取本文数据集、源码与项目文档 pregnant glucose bp skin insulin bmi pedigree age label 0 6 148 72 35 0 33.6 0.627 50 1 1 1

    2024年02月11日
    浏览(49)
  • 【线性回归、岭回归、Lasso回归分别预测患者糖尿病病情】数据挖掘实验一

    任务描述:将“diabetes”糖尿病患者数据集划分为训练集和测试集,利用训练集分别结合线性回归、岭回归、Lasso回归建立预测模型,再利用测试集来预测糖尿病患者病情并验证预测模型的拟合能力。 具体任务要求如下: 搜集并加载“diabetes”患者糖尿病指数数据集。 定义训

    2024年02月07日
    浏览(46)
  • 数据分析毕业设计 大数据糖尿病预测与可视化 - 机器学习 python

    # 1 前言 🚩 基于机器学习与大数据的糖尿病预测 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 选题指导,项目分享: https://gitee.com/yaa-dc/warehouse-1/blob/master/python/README.md 本项目的目的主要是对糖尿病进行预测。主要依托某医院体检数

    2024年02月08日
    浏览(51)
  • 《天池精准医疗大赛-人工智能辅助糖尿病遗传风险预测》模型复现和数据挖掘-论文_企业

    进入21世纪,生命科学特别是基因科技已经广泛而且深刻影响到每个人的健康生活,于此同时,科学家们借助基因科技史无前例的用一种全新的视角解读生命和探究疾病本质。人工智能(AI)能够处理分析海量医疗健康数据,通过认知分析获取洞察,服务于政府、健康医疗机构

    2023年04月09日
    浏览(58)
  • 数据挖掘-实战记录(一)糖尿病python数据挖掘及其分析

    一、准备数据 1.查看数据 二、数据探索性分析 1.数据描述型分析 2.各特征值与结果的关系 a)研究各个特征值本身类别 b)研究怀孕次数特征值与结果的关系 c)其他特征值 3.研究各特征互相的关系 三、数据预处理 1.去掉唯一属性 2.处理缺失值 a)标记缺失值 b)删除缺失值行数  c

    2024年02月11日
    浏览(50)
  • Python课程设计项目-基于机器学习的糖尿病风险预警分析系统

    这个东西是我大二时候做的,做的挺一般的,当时也没想着搭建界面啥的,测试的也不够,就是单纯的分享一下吧,不足之处大家多多指正,我会把所有的代码和数据在文章最后都放出来,喜欢的话点个赞吧! [摘 要] 糖尿病是一种全球性的流行性疾病,随着经济生活的高速

    2024年02月03日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包